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ABSTRACT Spatio-temporal filtering has been widely used for extracting discriminative features in the
motor imagery-based brain-computer interface (MI-BCI). In order to obtain high performance, the algo-
rithms need to enhance robustness or find class-discriminative bands for the spatial filter. However,
the existing methods either cannot derive the spatial and spectral filters with a unique objective function
for guaranteeing convergence or rarely consider the combined optimization of spatial-spectral filters and
other patterns for enhancing the discrimination. In this study, we present a novel feature extraction method
termed Spectrum-weighted Tensor Discriminant Analysis (SwTDA), which optimizes spectral filters along
with spatial filters and other associated patterns by tensor-based discriminant analysis. The proposed method
considers intrinsic spatial-spectral-temporal information contained by the physiological signal and hence
can identify discriminative characteristics robustly. The effectiveness of the algorithm is demonstrated by
comparing it with several state-of-the-art methods on two datasets involving 15 different subjects. Results
indicate that the SwTDA method yields higher classification accuracies than the competing methods.
Furthermore, interpretable spatial-spectral patterns that are determined by the algorithm can be used for
further analysis of the MI-based EEG signal.

INDEX TERMS Brain computer interface (BCI), spatio-spectral filter, tensor-based discriminant analysis,
motor imagery.

I. INTRODUCTION
Brain-computer interface (BCI) system can translate the
user’s intent to computer commands, so it is valuable for
people with severe motor disabilities [1], [2]. Electroen-
cephalogram (EEG) is often used in many BCI studies for
its noninvasive measurement and low cost. One type of
EEG-based BCI system is based on the modulation of sen-
sorimotor rhythm (SMR), which follows the event-related
(de)synchronization (ERD/ERS) when the subjects imagine
movements of their limbs, i.e., motor imagery (MI) [3]. Three
simple limb motor imagery (sMI) tasks (i.e., left hand, right
hand, and foot) are typical for the application because of the
discriminative characteristics between each other. In order to
obtain more output commands in MI-based BCI for the need
of many real-world applications, it is necessary to develop
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new types of MI tasks. Yi et al. [5] have investigated the
differences of the induced brain oscillatory patterns between
sMI and compound limb motor imagery (cMI).

In recent years, many new classification techniques have
been designed and explored to classify the EEG signal. Adap-
tive classifiers (e.g., [37]) are demonstrated to be generally
superior to static ones, even with unsupervised adapta-
tion; Riemannian geometry-based methods (e.g., [6], [36])
have reached state-of-the-art performances on multiple BCI
problems; deep learning methods (e.g., [32]–[34]) have
been applied to enhance the EEG classification accu-
racy. Other advanced techniques, such as transfer learn-
ing [11] or boosting ensemble methods [9], [35], are also
believed to be able to improve the performance. How-
ever, MI-based BCIs, the same as most pattern recog-
nition, not only use a classifier but also apply feature
extraction method to obtain characteristics as discriminative
as possible.
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Spatio-temporal filters have been proven to be successful
in enhancing the signal-to-noise ratio of the highly noisy
and low-spatial-resolution EEG signals [7], [14], [19],
[23], [25], [30]. The well-known common spatial patterns
(CSP) [8] is a highly successful spatial filtering technique to
extract Motor imagery-based signal features. However, good
performance of CSP severely depends on performing tempo-
ral filtering with a proper frequency band, which is important
for portraying SMR activities. Researches (e.g., [10], [30])
have shown that responsive frequency bands of ERD/ERS
are not consistent with inter- and intra-subjects. Many recent
works have been proposed and aim to resolve the problem.
The strategies they used are to enhance robustness or find
class-discriminative bands for spatial filtering. These works
can be categorized into three schemes as follows (to avoid
confusion, we use the temporal or spectral filter on the aspect
of class-discriminative bands, whereas the temporal pattern
for extracting time domain-related features).

The first scheme focuses on boosting robust to the individ-
ual variability by using regularization approaches, robust data
averaging, and/or new divergence measures [29]–[31]. Regu-
larization of the covariance matrix, e.g., [29], is one common
approach to increase robustness, especially in small-sample
settings. Recently, beta divergence-based CSP algorithms
(e.g., [30] and [31]) incorporate different types of regulariza-
tion schemes into the optimization process and improve the
performance robustly. The extended common spatial pattern
(ECSP) [4], which aims to obtain enough variance informa-
tion from the prior knowledge available data (e.g., the mean
data matrices of the two classes), has been reported to achieve
high performance in the dataset IIb of BCI competition IV.
However, these methods still neglect the frequency infor-
mation, and hence cannot provide to portray the rhythmic
activities in the sense of signal analysis.

The second category passes the signal through a fil-
ter bank and then finds spatial filters from the filtered
EEG signal. The Filter Bank Common Spatial Pattern
(FBCSP) [14] and its variants (e.g., SFBCSP [15] and
SCSSP [16]) belong to this category. Although these methods
have been reported to achieve high performance, the spec-
tral range of each subband must be predetermined. As an
improvement, Bayesian spatio-spectral filter optimization
(BSSFO) [17] is proposed to devise the arbitrary fre-
quency bands which are generated by a particle-based
approximation method. More recently, an error-correcting
output coding-based CSP (ECCSP-TB2B) is proposed by
Shahtalebi and Mohammadi [19]. In the part of feature
extraction, the ECCSP-TB2B extends the BSSFO technique
by using two frequency bands within each particle. It is worth
pointing out for the BSSFO and ECCSP-TB2B that the spatial
weights are optimized by CSP and the frequency bands are
found by an optimization problem based on the approximate
estimation of the posterior probability density function. This
means that the cost functions for these two optimization
problems are different.

The third category (e.g., [23]–[26]) performs the simul-
taneous optimization of spatial and spectral filters. The
spatio-temporally regularized CSP (STRCSP) [23] embeds
several time-delayed signals into raw EEG signals, and
obtains spatial and temporal bandpass filters simultaneously
based on CSP computation. However, the small time-delayed
number limits the flexibility of the spectral filters. The dis-
criminative filter bank CSP (DFBCSP) [25] conducts the
optimization of bandpass temporal filters and spatial fil-
ters by solving two subproblems of generalized eigenvalue
decomposition sequentially and alternatively. Along with a
different line, the iterative spatio-spectral patterns learning
(ISSPL) [24] optimizes temporal filters equivalently in the
frequency domain by alternate iteration. At each iteration,
the ISSPL computes spatial filters by the CSP technique,
whereas the spectral filters are equivalently solved by the
max-margin machine of a classifier. In other words, two
different criteria are respectively used for spatial and spectral
optimization. As an improvement on ISSPL, the maximizing
mutual information of spatial spectral features (MMISS) [26]
utilizes the criterion of maximizing the mutual information
instead of the strategy ISSPL uses. However, as mentioned
by the authors, MMISS is limited in finding the global opti-
mum because the convergence is related to a gradient search
method.

Overall, in order to obtain the class-discriminative bands,
it is preferred to optimize spectral filters rather than using
a fixed filter bank. As mentioned above, most of the stud-
ies derive the spatial and spectral filters alternately by two
different optimization criteria. The alternating iteration is
hard to guarantee to be converged because the cost func-
tions for these two problems are different. Furthermore, these
algorithms rarely consider the optimization to combine the
spatial-spectral filters and other patterns. Motivated by over-
coming the major issues of the methods mentioned above,
we develop a new algorithm, named Spectrum-weighted Ten-
sor Discriminant Analysis (SwTDA), for EEG classification.
EEG data are firstly transformed into the time-frequency
domain for forming tensor-based samples by adding the fre-
quency mode. Then the SwTDA finds the spectral filters with
the spatial filters and other associated patterns (e.g., temporal
pattern) based on Fisher’s discrimination criterion from the
repeatedly calculated residues of the original tensor data. Our
method belongs to the third category and contributes to three
primary aspects.

First, because of processing EEG signals in the form of
multiway arrays, the proposedmethod can find spectral filters
together with spatial and temporal patterns. Some recent
researches (e.g., [34]) have shown that temporal information
can contribute to high classification accuracy. The decom-
position that takes into account spatial-spectral-temporal
information and their consistency for trials can provide the
advantage of capturing interactions and couplings among
various variables (e.g., temporal, spectral, and spatial com-
ponents) often with physical or physiological meanings and
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interpretations [7]. Hence features extracted by the SwTDA
preserve intrinsic interactive information between multi-
dimensions, which can help for boosting the robustness.

Second, the SwTDA yields the frequency mode through
time-frequency transform so that it can find spectral weights
directly in the frequency domain. This contrasts with the
STRCSP, where the low order filters limit the flexibility in
shaping the passband and stopband. It also differs from the
BSSFO and ECCSP-TB2B, where the parameters of spectral
filters are defined as cutoff frequencies and thus the passband
and other frequency characteristics are only decided by the
used filter.

Third, the SwTDA achieves the simultaneous optimization
of spatial-spectral filters and other patterns based on maxi-
mizing tensor-based Fisher’s discrimination criterion, which
has a single cost function and has been proved to guarantee
monotonic convergence in reference [20]. Other methods,
such as ISSPL and ECCSP-TB2B, do not preserve this char-
acteristic because the objective functions for optimizing the
spatial and spectral filters differ from each other.

The remainder of the paper is organized as follows: the
mathematical formulation of the proposed SwTDA method
is presented in Section II. The experimental results come
on Section III. Then, the discussions are carried out in
Section IV. Finally, Section V concludes the paper.

II. SPECTRUM-WEIGHTED TENSOR DISCRIMINANT
ANALYSIS (SwTDA)
A. NOTATIONS AND BASIC TENSOR CONCEPTS
We denote tensors (i.e., multi-way arrays) by boldface Euler
script letters. For example, X ∈ RI1×I2×...×IN is a N -order
(or mode) tensor, where In(n = 1, . . . ,N ) is the size of
the mode-n. Matrices are denoted by boldface capital letters,
e.g., X ∈ RI×J ; vectors are denoted by boldface lowercase
letters, e.g., x; scalars are denoted by lowercase letters, e.g., x.
The mode-n product of a tensor X ∈ RI1×I2×...×IN with a
matrix A ∈ RJ×In , is defined as

Y = X ×n A (1)

whereY i1,...,in−1,j,in+1,...,iN =
∑In

in=1
X i1,i2,...,iNAj,in and Aj,in

denotes the element (j, in) of the maxtrix A.
The product of a tensor X ∈ RI1×I2×...×IN with a set of

matrices {A(n)
∈ RJn×In , n = 1, . . . ,N} is denoted as

Y = X × {A} = X ×1 A(1) . . .×N A(N ) (2)

Elementwise, we have

Y j1,...,jN

=

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

X i1,i2,...,iNA
(1)
j1,i1

. . .A(N )
jN ,iN (3)

B. FEATURE EXTRACTION
Assume that we have a training set, {Xm ∈ RI1×I2 ,m =
1, 2, . . . ,M}, where I1 is the number of channels and I2 is

TABLE 1. List of symbols in this paper.

the number of sample points, andM is the total trial number.
In order to optimize spectral filter directly in the frequency
domain, each trial data is represented as a 3-order tensor with
modes (channel × time× frequency) by wavelet transforma-
tion. To be more specific, the tensor Xm ∈ RI1×I2×I3 of the
m-th trial is given by the amplitude of wavelet transformed
signal

Xm = ‖ψ ∗ Xm‖ (4)

where ψ is the wavelet function. We select the complex Mor-
let wavelet, ψ(t) = 1

√
π fb

exp(i2π fct)exp(− t2
fb
), as the mother

wavelet. The bandwidth parameter fb is set to 2, and the
wavelet center frequency fc is set to 1, since these parameters
have been successfully applied in the time-frequency analysis
of EEG signal [22]. If the broad frequency range we focus
on is [f1, f2], the mode size of the frequency domain, I3,
is decided by

I3 = size([f1 : fr : f2]) (5)

where fr is frequency resolution; [f1 : fr : f2] denotes the
vector [f1, f1+ fr , f1+2fr , . . . , f2]; size( · ) return the element
number of the vector. Note that fr = 1 Hz is used in this study.

The tensor Xm consists of I3 spatio-temporal matrices,
each of which denotes a frequency component. Given a spec-
tral filter p = [p1, p2, . . . , pI3 ]

T
∈ RI3 , we define the spectral

projection as the weighted sum of the matrices:

Ym =
I3∑
f=1

pf Xm,f (6)

where Xm,f = Xm(:, :, f ), f ∈ {1, 2, . . . , I3}. pf denotes the
weight that Xm,f contributes to feature.

A spatial projection (named spatial filters) and a temporal
projection are used to reduce the dimension of the spectral
projection Ym. Given a spatial filter ur ∈ RI1 and a temporal
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pattern wj ∈ RI2 , the spatial-temporal projection can be
formulated as

zr,j = u>r Ymwj (7)

where zr,j is the projection signal of Xm by {ur , wj, p}.
Finally, the combination of the spatial, temporal, and spectral
projections can be written as the product of the tensor Xm
with {U ,W , p}

Zm = Xm ×1 U> ×2 W> ×3 p> (8)

where U = [u1,u2, . . . ,uR], R is the number of spatial
filters; W = [w1,w2, . . . ,wJ ], J is the number of temporal
projection; Zm consists of the projection features and zr,j is
the element (r, j) of Zm. Fig. 1(a) illustrates the principle of
SwTDA.

FIGURE 1. Graphical explanation of the SwTDA projection model.
(a) SwTDA projects Xm to Zm through {U , W , p}. (b) Projection into terms
with D spectral filters.

Fisher’s discrimination criterion (FDC) can be adopted to
find {U , W , p}. The reason is that maximizing FDC has
a single cost function for the optimization problems and
guarantees monotonic convergence [20]–[22]. The scatter
matrices and the corresponding FDC can be defined as:

Sw =
M∑
m=1

‖Zm − Z̄km‖
2,Sb =

K∑
k=1

Mk‖Z̄k − Z̄‖2 (9)

J = argmax
{U,W ,p}

Sb/Sw (10)

where Sw and Sb are within-class and between-class scatter
matrices respectively; K is the number of classes; km is the
class label for the m-th training sample; Z̄km is the mean
feature of class km; and Z̄ is the mean of all sample fea-
ture, i.e., Z̄ = 1

M

∑M
m=1 Zm. ‖ · ‖

2 denote L2 Frobenius
norm. There exist no closed-form solutions for (10) to deter-
mine {U ,W , p} simultaneously, so the alternating projection
method that fix all but one is used as a suboptimal solution.
Please see Appendix A for details to solve the problem (10).

Assuming that p1, . . . , pD are the spectral filters we finally
sovle for, equation (8) can be rewrote as follows

Zm,d = Xm,d ×1 U>d ×2 W>d ×3 p>d , d = 1, 2, . . . ,D

(11)

Algorithm 1 Spectrum-Weighted Tensor Discriminant Anal-
ysis (SwTDA)

1: input: M training tensor {Xm ∈ RI1×I2×I3 ,m =

1, . . . ,M}, the number of spectral filters D;
2: output: The set of projection matrices {Ud ∈ RI1×Rd ,
Wd ∈ RI2×Jd , pd}, d = 1, . . . ,D;

3: for 1 ≤ d ≤ D do
4: initial Ud ,Wd , pd ;
5: repeat
6: fix Ud and Wd to solve the problem: pd =

argmax (Sb/Sw);
7: fix Wd and pd to solve the problem: Ud =

argmax (Sb/Sw);
8: fix Ud and pd to solve the problem: Wd =

argmax (Sb/Sw);
9: until Stop criterion is met
10: for 1 ≤ m ≤ M do
11: Zm,d = Xm ×1 U>d ×2 W>d ×3 p>d ;
12: Xm = Xm − Zm,d ×1 Ud ×2 Wd ×3 pd ;
13: end for
14: end for

here, we set Xm as Xm,1. And for d > 1, let Xm,d =

Xm,d−1−Zm,d−1×1Ud−1×2Wd−1×3pd−1. This means that
we obtain a set of projections with the scatter ratio criterion
from the repeatedly calculated residues of Xm, and each
pd explains the most discriminative frequency pattern of the
remaining variation. As shown in Fig. 1(b), the decomposi-
tion model of SwTDA can be represented as

Xm =

D∑
d=1

Zm,d ×1 Ud ×2 Wd ×3 pd (12)

The pseudocode of the proposed SwTDA is summarized in
Algorithm 1. Note that the SwTDA is easily extended into
four or more higher order case. To be more specific, given
Xm is a L-order tensor, equation (12) can be rewrote as

Xm =

D∑
d=1

Zm,d ×1 U
(1)
d . . .×L−1 U

(L−1)
d ×L pd (13)

where U (l)
d (l = 1, . . . ,L − 1) is the projection matrix in

mode-l and Zm,d ∈ RId,1×...×Id,L−1 is the feature tensor.
Indeed, if D is set to 1, SwTDA is a special case of

GTDA [20] or HODA [22] with the objective of maximiz-
ing the scatter ratio. Furthermore, SwTDA is a heuristic
approach with residue calculation, where the spectral fil-
ters are obtained one after another. Therefore, there is no
orthogonality between any two spectral filters. Additionally,
mathematical arguments in reference [20] show that maxi-
mizing the scatter differential (or ratio) by the alternating
method guarantees monotonic convergence. The MATLAB
code of SwTDA is available upon requests from the
authors.
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C. FEATURE SELECTION
Features of a trial can be reshaped to form a vector vm ∈ RT ,
where T =

∑D
d=1 Id,1 × Id,2 . . .× Id,L−1. In order to obtain

the most discriminative features for classification as well as
reduce the feature dimension, Fisher Score [27] is employed
for ranking the features. To be specific, given feature matrix
V ∈ RM×T for theM training samples, let µ denote the mean
feature vector of all classes whereas µk and σ k respectively
denote the mean and standard deviation vectors of the k-class
feature vectors. The i-th Fisher score, which corresponds to
the i-th column of V , is computed below:

F(i) =

∑K
k=1Mk (µk,i − µi)2∑K

k=1Mkσ
2
k,i

(14)

where µk,i and µi are the i-th element of µk and µ respec-
tively, and σk,i is the i-th element of σ k . Significant features
corresponding to the largest N (N � T ) scores could be
chosen for training the classifier. In the testing phase, a trial
tensor X t is first projected to the feature components, and
then the components are selected and fed into the classifier
for predicting the class label.

III. EXPERIMENTS AND RESULTS
In this section, we compare the proposed method with the fol-
lowing algorithms: (i) the conventional CSP; (ii) the FBCSP
method [14]; (iii) the STRCSP method [23], which optimizes
bandpass temporal filters with spatial filters in the CSP-based
framework; (iv) the divCSP [30], which is based on diver-
gence measures and incorporates robust property into opti-
mization process; (v) the CSP\AM-BA-SVM method [28],
which is based on the idea of FBCSP but applies a hybrid
Attractor Metagene (AM) and Bat Algorithm (BA) for fea-
ture selection along with SVM optimization; (vi) the ECSP
method [4], which takes into account prior knowledge avail-
able from data and leads to a set of features that enhance
the discrimination between the two classes; (vii) the method
in reference [34], which employs the FBCSP to select the
temporal representation for a convolutional neural network,
named as Channel-wise Convolution with Channel Mixing
(C2CM); and (viii) the ECCSP-TB2B [19], which iteratively
optimizes a set of particles (each particle consisting of 2
bandpass filters) and obtains CSP-based features from the
bandpass filtered EEG signal. The experiments are performed
based on two public databases. The performance is measured
by the classification accuracy, i.e., acc = Mc

Ma
× 100%, where

Mc represents the number of correct classification trials, and
Ma is the total trial number of the testing set.

A. DATASET ASSESSMENT
Dataset A was from international BCI dataset IVa of the
BCI competition III (available at http://www.bbci.de/ com-
petition/iii/) [13]. EEG signals from five healthy subjects
(aa, al, av, aw, ay) were recorded at 1000 Hz sampling rate
from 118-scalp positions with high-pass and low-pass fil-
ters 0.05 and 200 Hz. This dataset consists of two motor

TABLE 2. Number of training (labelled) trials ‘‘#tr’’ and test (unlabelled)
trials ‘‘#te’’ for each subject.

imageries: right hand and right foot. Table 2 shows the respec-
tive number of training trials and test trials for each subject.
The EEG data were down-sampled to 100 Hz (by picking
each 10th sample) in our experiment.

Dataset B was provided by Yi et al. [5] (available at
https://doi.org/10.7910/DVN/27306). This dataset consists of
six kinds of motor imagination tasks, i.e., left-hand (LH),
right-hand (RH), both-hand (BH), foot (F), left-hand with
right-foot (LH&RF), and reft-hand with left-foot (RH&LF).
Signals of 64 EEG channels were recorded from ten healthy
subjects (S1-S10) with sampling rate of 1000 Hz, and an
additional 50 Hz notch filter was used during data acquisi-
tion. Similarly, all data were down-sampled to 100 Hz for
analysis. A total of 480 trials were collected for each subject
(80 trials per task, among which top 60% numbers of trials
were used for the training data set, and the remaining trials
were for testing). In order to evaluate the single-trial binary
classification performance between sMI and cMI tasks, nine
binary classification subsets were constructed from the data
of each subject: LH vs. BH, LH vs. LH&RF, LH vs. RH&LF,
RH vs. BH, RH vs. LH&RF, RH vs. RH&LF, F vs. BH, F vs.
LH&RF and F vs. RH&LF. Besides, another three subsets
were constructed to evaluate the classification performance
between two cMI tasks, i.e., BH vs. LH&RF, BH vs. RH&LF,
and LH&RF vs. RH&LF. Thereby, there were 12 binary
subsets for each subject, and finally, a total of 120 subsets
were obtained.

B. PARAMETER SELECTION AND
EXPERIMENTAL PROCEDURE
Fig. 2(a) shows the general pipeline for all comparative algo-
rithms. Although a wide range of classifiers is available,
a simple classifier is preferred so that the performance is
mainly contributed by the feature extraction algorithm rather
than the classifier. We typically used linear discriminant anal-
ysis (LDA) to model and classify MI tasks except for the
CSP\AM-BA-SVM and C2CMmethods. If there are no spe-
cial instructions, details of implementation for both datasets
are listed as follows. A homogeneous setting of channels and
time window is adopted for all the comparative methods for
a fair comparison.

In the preprocessing stage, the EEG data of 40 channels
(see Fig. 2(b)) were filtered in 7-30 Hz with a fifth-order But-
terworth filter (the FBCSP andC2CMwere the exceptions for
this procedure), and the signals from the period of 0.5-3.5s
were selected for each trial. So a trial was represented as
a matrix of 40 channels × 300 time points, and for the
SwTDA, the tensor of each trial was size of 40 channels ×
300 time points × 24 frequency bins according to the equa-
tions (4) and (5). Since the number of time points was much
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FIGURE 2. (a) The general framework for single-trial EEG classification in this study. The black and red arrows stand for the training and testing
procedure respectively. (b) 40 electrodes (according to the 10-20 international system) were used in this study.

TABLE 3. The accuracy[%] comparison for different methods applied on the test data of Dataset A.

larger than the number of channels or frequency bins, the scat-
ter matrices consequently would cause an ill-conditioned
eigenvalue problem. Hence, the strategy of multiple time
intervals was used in practice. To be specific, each trial was
finally reshaped as a 4-D tensor with modes 40 channels ×
15 time segments × 20 time points × 24 frequency bins. For
FBCSP or C2CM, the filter bank was designed to cover the
frequency band of 7-31 Hz, which consisted of six nonover-
lapping temporal bandpass filters that covered a bandwidth
of 4 Hz.

In the stage of feature extraction, three pairs of spatial
filters corresponding to the largest and smallest eigenval-
ues were obtained by CSP, divCSP, STRCSP, ECSP, each
sub-band of FBCSP, C2CM, or ECCSP-TB2B. For SwTDA,
the number of spectral filters D was set to 3. For the d-th
spectral filter, we assumed Jd = Sd = Rd = 3, where Sd
was the number of time segment patterns. Moreover, we also
assumed J1 = J2 = J3.
Furthermore, other parameters that we tuned to obtain

the best classification accuracy were decided by 5 × 5
cross-validation on the training set for each method and
subject (or subset). The dimension of log-variance features
was chosen out of {2, 4, 6} for CSP, FBCSP, divCSP, and
STRCSP, whereas the number of features N was selected
from 1 to 6 with step 1 in SwTDA. The ECSP method
uses linear regression method LASSO to decide the feature
dimension. The regularization parameter λ1 in the LASSO

cost function was selected from a set of 200 logarithmically
spaced points between 1e-5 and 1. In the C2CM, temporal
featureswere extracted from 2×Ns spatially filtered channels.
The parameterNs was chosen out of {1, 2, 3}. The filter order
and regularization coefficient in STRCSP were selected from
the sets {6, 8, 10, 12, 14, 16} and 10−6×{1, 2, . . . , 50} respec-
tively. In divCSP, the parameter λ was selected from the set
of 11 candidates {0, 0.1, 0.2, . . . , 1} and beta parameter was
chosen out of {−0.0005, −0.001, −0.0015, . . . , 0, 0.5, 1}.
For the ECCSP-TB2B method, the number of particles was
selected within the range of 5 to 50 with steps of 5.

Besides, the divCSP, ECCSP-TB2B, and SwTDA need
a stop criterion, which guarantees a stable convergence.
The stopping criterion for iterations of divCSP was that the
difference between two successive iterations was less than
1× 10−8, or the number of iterations has achieved 1000.
The maximum iterative number for the ECCSP-TB2B was
varied from 5 to 50 with steps of 5, which was determined
by cross-validation. In the case of learning one spectral filter
for SwTDA, the iteration stopped when the change of Fisher
ratio between two consecutive iterations was less than a preset
threshold 6× 10−4 or iteration number reached 40.

C. RESULTS FOR DATASET A
Table 3 shows the testing classification accuracies for dataset
A. We can see that our algorithm achieves the highest mean
accuracy of 86.71%. Although the FBCSP obtains the best
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FIGURE 3. Scatter plots showing classification accuracies of the SwTDA (y-axis) against six other
methods(x-axis). The points above the diagonals indicate the superiority of the algorithm on the y-axis
over the one on the x-axis. The p-value of the Wilcoxon signed rank test is shown at the right-bottom
corner. The null hypothesis of the Wilcoxon test is that the median of the accuracy rate differences is
greater or equal to zero. For p < 0.05, we reject this null hypothesis; thus, we say that our method
significantly outperform the baseline.

performance for subjects al, aw, it only gives slightly bet-
ter mean accuracy than CSP, because of weak accuracy for
subjects ay. It is worth noting that the STRCSP method
obtains weak classification performances in this experiment.
However, it yields 83.52% of average accuracy when we only
modify the filtering band from 7-30 to 4-47 Hz. Moreover,
the combination of STRCSP and SFLDA (sparse fisher lin-
ear discriminant analysis) classifier has been proved to be
effective in [23]. Hence, two likely explanations for the poor
performances by STRCSP+LDA include: (1) the STRCSP
algorithm constructs for each trial an augmented data that
contains both the original EEG signal andN−1 time-delayed
copies, where N is the order number of the frequency fil-
ters. In order to alleviate serious dimensionality issue, fig3
the flexibility of the frequency filters with a small order
(N ≤ 16) is still limited for spectral optimization; and (2)
good performance of the STRCSP needs the classifier with
sparsity to address the curse-of-dimensionality issue.

As an improvement on FBCSP, the CSP\AM-BA [28],
which selects the frequency bands based on the Bat algo-
rithm (BA), is reported to achieve an average accuracy
of 85.01%. And the ECCSP-TB2B finds the particles (2 fre-
quency bands per particle) based on a Bayesian framework
and yields 85.36% of mean accuracy. We have also com-
pared the proposed method with the C2CM [34], which is
considered as one representative method of deep learning
applied to EEG-based BCI. The advantage of deep learning
is that a large number of hidden layers can be used for
extracting features out of input data. In our applications,
the C2CM achieves good performances except for the data
of subject ay, which only has a small number of training
samples. As mentioned in [7], [34], one challenge of deep
learning is how a small number of samples can be used to train

high capacity networks without suffering from the overfitting
issue. Furthermore, an excellent deep learning method still
needs to include a data preparation stage, in which a feature
extraction method is employed to represent EEG signals in
a compact relevant manner without any significant loss in
information [32]–[34].

D. RESULTS FOR DATASET B
Compound limb motor imagery (cMI) is a more complex
cognitive process than simple limbmotor imagery (sMI) [18].
Fig. 3 shows the classification accuracies of the testing sets
of the 120 subsets. The accuracy rate of our approach is
represented on the y-axis, i.e., if the coordinate point is above
the diagonal line, then our method outperforms the method
represented on the x-axis. The red number at the lower
right corner denotes the p-value when applying the one-sided
Wilcoxon sign-rank test. The null hypothesis of theWilcoxon
test is that the median of the accuracy rate differences [our
method (y-axis)-baseline method (x-axis)] is greater or equal
to zero. For p < 0.05, we reject this null hypothesis; thus,
we say that our method significantly outperforms the others.

We can see from the plots that the SwTDA significantly
increases classification accuracy rates compared to the CSP
(p = 0.0001), FBCSP (p = 0.0013) and STRCSP
(p < 0.0001). Although the improvements are not signif-
icant, we also can see that the SwTDA performs better
than the divCSP (p = 0.2192), ECSP (p = 0.1980) and
ECCSP-TB2B (p = 0.2312). The results of 120 subsets
are classified into 12 groups according to the task of motor
imagery. The mean classification accuracy for each group
is provided in Table 4. The results show that the SwTDA
achieves the best mean accuracy of 84.4%, which is slightly
better than the accuracy of ECCSP-TB2B.
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TABLE 4. Average accuracies (%) ± standard deviation for each group with different methods, tested on Dataset B.

IV. DISCUSSION
A. PERFORMANCE ANALYSIS
Since the frequency band of ERD/ERS is usually subject-
specific, the CSP works well in some subjects but fails at
others when the raw EEG signals are bandpass filtered with
a fixed frequency range 7-30 Hz. As a further extension
of CSP, the FBCSP obtains the EEG rhythms from a filter
bank and hence performs slightly better than the CSP. The
divCSP encompasses different types of robust properties in
the computing process of the spatial filters and hence per-
forms excellently in a broad frequency range. But this also
means that it is hard to obtain exact frequency information
for portraying rhythmic activities. Different from the CSP,
FBCSP, and divCSP, the STRCSP allows finding temporal
bandpass filters within the CSP computing. However, as a
feature extraction method, the STRCSP suffers from deteri-
oration of performance when combined with a simple LDA
classifier in our applications.

The ECSP uses prior knowledge available from data to
produce discriminative features and hence significantly out-
performs the conventional CSP method. However, similar to
divCSP, the ECSP neglects to find the class-discriminative
bands, which are crucial for capturing the ERD/ERS change.
From the results of two datasets, the SwTDA method that
optimizes the spectral filter appears to achieve better perfor-
mance than the ECSP. In our applications, the ECCSP-TB2B
can achieve excellent results in most of the cases. However,
deterioration of performance happens on some subsets. Dur-
ing the optimization procedure, the particles (i.e., frequency
bands) are updated by adding a disturbance that follows a
normal distribution to the values of the band limits. Then
the filter bank is checked for continuing the next update or
stopping the iteration. Because it is difficult to traverse all
the candidates of the cutoff frequencies, the value of the vari-
ance in the normal distribution and the number of iterations
need to be selected appropriately, or the final bands may
be suboptimal in the sense of classification enhancement.

Besides, defining the bandpass filters by a simple band
limitation-based way falls into the case that the passband and
other frequency characteristics will only be determined by the
selected filter. This problem can be demonstrated in the next
subsection.

The SwTDA is proposed to find the patterns by tensor-
based discriminant analysis, which is a natural extension of
LDA. The maximization of Fisher’s discrimination finds the
spectral filters and the associated spatial-temporal patterns
simultaneously. On the one hand, unlike the conventional
CSP and FBCSP, the proposed method directly designs the
user-specific parameters for the filters such as the passbands.
On the other hand, different from ECSP and ECCSP-TB2B,
the proposed method has the opportunity to capture the inter-
actions and couplings within multi-dimensions and seems
promising to lead to more robust EEG classification. The
results confirm that the SwTDA is effective in extracting
discriminative features of the ERD/ERS activity.

B. SPATIAL-SPECTRAL OPTIMIZATION
One advantage of spatial-spectral optimization is that it
allows to reveal discriminating parts in the spectrum and
topography. To demonstrate differences between the spatial-
spectral filters obtained by the comparative methods, one
specific subset is picked up for subject S8. During each trial
of this subset, the subject performs motor imageries of F and
LH&RF. Fig. 4 shows the spatial and spectral filters for this
subset. The r2-value [13], [21] which is listed beneath each
weight map is used to evaluate the discriminative information
derived from corresponding spatial pattern. We define the
r2-value as

r2 = (

√
N1 ∗ N2

N1 + N2

mean(z1)−mean(z2)
std(z1 ∪ z2)

)2 (15)

where z1 and z2 are the features generated from the same
spatial filter for class 1 and 2 respectively, and N1 and N2
are the sample numbers of calss 1 and class 2 respectively.
Larger r2-value indicates a higher separability of features.
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FIGURE 4. The most discriminative patterns obtained by different methods for subset S8-8, which is associated with the MI tasks of F
versus LH&RF. The first and second rows are the scalp weight maps corresponds to two of the most discriminative spatial filters. The
bottom row (3) displays the spectral characteristics associated with the scalp weight for STRCSP and SwTDA. Specifically for STRCSP
and ECCSP-TB2B, the blue solid line and the red dash-dotted line denote the frequency response curves associated with their scalp
weight maps of the first and second rows respectively.

We can observe that all the methods have extracted the
important spatial components for this specific example.
Although there exist similar weight maps between some
methods, different r2-values are obtained because of adopting
different optimization criteria. Features generated from the
SwTDA may be more correlated with the imagery tasks for
the highest r2-value. To be specific, the topographic maps
provided by SwTDA show that, channels (i.e., FC2 and FC4)
over centro-parietal on the right brain hemisphere show the
most influential weights with opposite directions for discrim-
ination respectively, which would explain underlying cortical
activity patterns of subject S8 during themotor imagery tasks.

Fig. 4 also provides the spectral information associated
with the spatial filters. Note that the CSP, FBCSP, divCSP,
ECSP and ECCSP-TB2B obtain frequency response curves
by 5-th order Butterworth bandpass filter, and the STRCSP
achieves them by the optimized temporal filters whereas the
spectral weights of SwTDA denote the amplitude-frequency
characteristics directly. We can observe that all the methods
have included the important components of higher alpha
(10-16 Hz) rhythms. But for the scheme that adopts the fixed
filter bank strategy (such as the FBCSP), since each fre-
quency band is treated independently, possible correlations
between different EEG rhythms may be ignored when it is
used for further analysis of the signal. On the other hand,
we cannot obtain the spectral characteristics exactly from the
curves obtained by the STRCSP, since the bandpass filter with
low order limit the flexibility in shaping the passband and
stopband. By contrast, the spectral filter obtained by SwTDA
clearly exhibits that the important rhythms concentrate on
12 Hz and 24 Hz. This is in accordance with the spectral
characteristics presented by the ECCSP-TB2B. However,
unlike the ECCSP-TB2B where the passband characteris-
tics are decided by the used filter (e.g., Butterworth filter),
the proposed SwTDA finds spectral weights directly in the

frequency domain, which is more flexible in depicting the
frequency characteristics.

V. CONCLUSION
In this study, we introduce a method of Spectrum-weighted
Tensor Discriminant Analysis (SwTDA) to motor imagery
classification in BCI application. The SwTDA employs the
technique of tensor-based discriminant analysis to solve for
the combined optimization problem of spatial and spectral fil-
ters. The alternative and iterative learning method is adopted
to optimize the cost function and derive spatial-spectral filters
together with other patterns. Therefore, features extracted
by the SwTDA can reflect the intrinsic characteristics in
multiway data, which assists to enhance discriminability
and robustness. Under the same condition, the experimental
results of two EEG datasets demonstrate that the proposed
method improves the classification accuracy in compari-
son with state-of-the-art methods. Furthermore, significant
spatial-spectral patterns that are determined by the SwTDA
are useful for studying the oscillatory patterns of different
EEG tasks and contribute to a better understanding of the
task mechanisms. Finally, since the extracted features are
tensors, the combination of SwTDA and the tensor-based
classifier (e.g., Riemannian geometry classifier and deep neu-
ral network) deserves to be explored for further improving the
classification performance.

APPENDIX A
SOLUTION OF SwTDA
Tensor Operation 1: The mode-n matricization of a
tensor X ∈ RI1×I2×...×IN is denoted by X (n) ∈

RIn×(I1×...In−1×In+1×...IN ). The element (in, j) of X (n) is

X (n)(in, j) = X i1,i2,...,iN (16)

where j = 1+
∑N

k=1,k 6=n(ik − 1)Jk , with Jk =
∏k−1

m=1,m 6=n.
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Tensor Operation 2: The contracted product of tensor X
along all but the mode-n is defined as

〈X ,X 〉−n = X (n)X (n)
T (17)

whereX (n) denotes the mode-nmatricization of the tensorX .
Definition 1: Concatenating a set of M tensor samples

{Xm ∈ RI1×I2×...×IN , m = 1, 2, . . . ,M} along the mode-
(N + 1) in tensor Xm ∈ RI1×I2×...×IN×IM is denoted as

X = cat(N + 1,X 1,X 2, . . . ,XM ) (18)

The alternating method to solve for the problem (10) is
detailed as follows. Supposing that {U, p} are given, we can
represent Sw and Sb as

Sw =
M∑
m=1

‖[(Xm − X̄ km )×1 UT
×3 pT ]×2 WT

‖
2

= tr[WTS(−2)w W ] (19)

Sb = Mk

M∑
m=1

‖[(X̄ k − X̄ )×1 UT
×3 pT ]×2 WT

‖
2

= tr[WTS(−2)b W ] (20)

where tr[ · ] returns the sum of the diagonal elements in the
square matrix. S(−2)w and S(−2)b are the mode-2 scatter matri-
ces, which can be expressed via tensor contracted products

S(−2)w =

M∑
m=1

〈Am,Am〉−2 = 〈A,A〉−2 (21)

S(−2)b =

K∑
k=1

〈Bm,Bm〉−2 = 〈B,B〉−2 (22)

where

X̂m = Xm − X̄ km , X̂ = cat(4, X̂ 1, X̂ 2, . . . , X̂M ) (23)

X̃m =
√
Mk (X̄ k − X̄ ), X̃ = cat(4, X̃ 1, X̃ 2, . . . , X̃M )

(24)

Am = X̂m ×1 U ×3 p (25)

Bm = X̃m ×1 U ×3 p (26)

A = X̂ ×1 U ×3 p (27)

B = X̃ ×1 U ×3 p (28)

In above equations, Mk is the sample number of class k ,
and km is the class label for the m-th training sample. X̄ k
and X̄ km denote the mean of the data in class k and class km
respectively. X̄ is the mean of all samples. X̄ , X̄ k and X̄ km
are computed as

X̄ =
1
M

M∑
m=1

Xm (29)

X̄ k =
1
Mk

∑
m∈k

Xm, X̄ km =
1
Mkm

∑
m∈km

Xm (30)

So when fixing U and p, the learning rule for W can be
found via solving the below optimization

W = argmax
tr[WTS(−2)b W ]

tr[WTS(−2)w W ]
,

subject toWTW = I (31)

where WTW = I is to ensure the orthonormality of the
projectionmatrix. The problem of equation (31) can be sovled
by generalized eigenvalue problem

S(−2)b W = S(−2)w W3 (32)

where W is the eigenvectors corresponding to the largest J
eigenvalues in the diagonalmatrix3. Similar way can be used
to solve for U or p.
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