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ABSTRACT

The multi-modal neuroimage study has dramatically facili-
tated disease diagnosis. Tensor-based methods are commonly
used to represent multi-modal data as multi-dimensional ar-
rays and usually implement matrix decomposition. These
methods can be seen as a linear algebraic way for the lossy
compression of an array. However, involved lossy oper-
ations might have a negative impact on performance, and
overlook underlying important complementary information
between modalities. This study proposes a Tensor-based
Complex-valued Graph Neural Network (TC-GNN) to model
multimodal neuroimages as complex-valued tensor graphs
by investigating underlying complementary associations and
cross-modality message aggregation. Experiments on two
real-world datasets demonstrate our method’s consistent im-
provements and superiority over other baseline models in
multi-modal brain disease analysis.

Index Terms— Multimodal, Tensor, Graph neural net-
work, Neuroimage, Gating.

1. INTRODUCTION

Advanced neuroimaging tools, e.g. functional MRI (fMRI)
and Diffusion Tensor Imaging (DTI), have become promising
candidates for brain disorder diagnosis, such as Alzheimer’s
disease (AD), and Parkinson’s disease (PD) [1, 2]. Func-
tional and structural brain networks, which are derived by
mapping corresponding fMRI and DTI neuroimages into a
brain parcellation template, play a key role in characterizing
the interplay of anatomical and functional brain alterations.
Among state-of-the-art deep learning technologies, Graph
Neural Networks (GNN) has been widely applied in medi-
cal scenario, and have been state-of-art tools to relate graph
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Fig. 1. Comparison of conventional tensor-based approaches
(CP and Tucker Decomposition) with proposed complex-
valued tensor graph.

representations for automatic diagnosis.
Recently, integrating functional and structural networks

has become an important topic of study. There is mounting
evidence demonstrates that mapping the interplay of multiple
modalities is more feasible to encode meaningful and regu-
larized representations [3, 4, 5]. For example, [6] proposes to
perform a two-layer convolution on the fMRI and DTI data si-
multaneously. [4] regularizes convolution on functional con-
nectivity with structural graph Laplacian. The hypergraph
strategy provides a way of associating multiple relationships,
as well as capturing multimodal dependencies [7, 8].

A straightforward and natural way of investigating multi-
modal data is to model multimodal data as multi-dimensional
arrays, which are known as tensors. Tensors have become
powerful tools for the discovery of underlying hidden com-
plex data structures in brain data as well as relating com-
mon patterns from independent components [9, 10]. Most
existing tensor-based approaches utilize tensor decomposi-
tion, e.g. Canonical Polyadic (CP) and Tucker Decomposition
(TD), to identify representative features along with improv-
ing learning efficiency [11, 12]. However, these approaches
are proposed based on matrix approximation and factoriza-IC
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tion, where involved lossy operations might decrease the per-
formance. Moreover, these methods potentially ignore under-
lying cross-modality associations and fail to capture impor-
tant intrinsic complementary information among modalities
for multi-modal learning.

In this regard, we propose to investigate multi-modal data
as complex-valued tensors. The idea behind this is to con-
struct a composite tensor for learning latent multimodal repre-
sentations and generating high-order generalizations of matri-
ces to capture the consistency among modalities. As is shown
in Figure 1, apart from conventional tensor-based approaches
that decompose tensors into vectors or arrays, we introduce
the complex-valued neural network (CVNN) [13] to encode
tensor representations. We explicitly model multi-modal data
into a complex-valued tensor graph, which allows for richer
representations by expressing the neuron’s output with multi-
ple indices.

Moreover, in this study, we propose a Tensor-based
Complex-valued Graph Neural Network (TC-GNN) for
modeling with cross-embedding and cross-aggregation. In
addition, existing complex-valued neural networks fail to
consider neuronal synchrony, where the gating of informa-
tion processing and dynamic binding of representations are
ignored. In particular, we propose a gated complex-valued
graph convolution layer for attentively modeling the interplay
between modalities. Experiments on two real-world datasets
demonstrate that our proposed method is a superior tool for
multimodal brain disorder classification, which outperforms
other baselines in prediction performance.

2. METHOD

2.1. Complex-valued Tensor Graph Construction

Functional and structural networks Xf ,Xs ∈ Rm×m are sym-
metric matrices derived by a template with m regions. A brain
network is formulated as a graph G = (V, E), where the sets
V and E denote the nodes and links.

Node. As is shown in Figure 1, the functional and
structural features for vertex vi are constructed into a two-
dimensional array xi ∈ R2×m, where the node features for
each modality are built by the i-th column or row in the
matrices X . The array is further formulated into a complex-
valued tensor, where the functional and structural networks
are represented as the real and imaginary parts.

Edge. Apart from conventional graph data, brain net-
works have unclear graph structures. A well-known strategy
is by dynamic graph convolution [14], where the edges are
dynamically embedded by fE : {Xf ,Xs} → E .

2.2. Proposed TC-GNN

Figure 2 demonstrates the proposed TC-GNN, with dynamic
complex-valued edge embedding (DCEE), complex-valued

node embedding (CNE), and gated complex-valued graph
convolution (GCGC) layers.

2.2.1. Dynamic Complex-valued Node Embedding.

The multi-modal node features are aggregated from the con-
nection features to the centroid node with a complex-valued
multi-layer perception embedding. The output features are
obtained by a weighted sum. In detail, given a vertex vj , the
corresponding features hj are obtained from its connections
Nj = {xj,1, xj,2, ..., xj,m}:

hj = fn(Nj)

=
∑

k∈N (j)

Re(wk)Re(xj,k)−
∑

k∈N (j)

Im(wk) Im(xj,k)

+ i
∑

k∈N (j)

Re(wk) Im(xj,k) + i
∑

k∈N (j)

Im(wk)Re(xj,k)

(1)

where Re and Im represent the real part and imaginary part
respectively, and w are parameterized by the network.

2.2.2. Dynamic Complex-valued Edge Embedding.

Usually, the edge connections should be conditioned on the
node field. We use a transformation matrix W to estimate the
dynamic adjacency matrix L from the connectivity x by:

L = σ(L̂) (2)

L̂j,k =Re(wj,k)Re(xj,k)− Im(wj,k) Im(xj,k)

+ i Im(wj,k)Re(xj,k) + i Im(wj,k)Re(xj,k)
(3)

where σ is a sigmoid function, and wj,k denotes the element
of the matrix W in the j-th row and k-th column.

2.2.3. Tensor-based complex-valued graph convolution.

The complex-valued graph convolution layer is proposed by
replacing the real kernel with a complex-valued kernel. Given
a complex-valued adjacency matrix L = Re(L) + i Im(L)
and an input feature H = Re(H) + i Im(H), the complex-
valued graph convolution is obtained by using a combination
of real-valued convolutions:

LHl−1W = (Re(L) + i Im(L)) · (Re(Hl−1)

+ iRe(Hl−1)) · (Re(W) + i Im(W))
(4)

2.2.4. Others

Complex-valued Activation Function. To avoid violating
the Cauchy-Riemann equations, the CReLU function is im-
plemented as the activation for mapping heterogeneous re-
gions of interest within the real and imaginary parts respec-
tively: CReLU(x) = ReLU(Re(x)) + iReLU(Im(x))
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Fig. 2. The framework of the proposed gated complex-valued graph convolution network. Complex-valued tensor graphs
derived from functional and structural networks are further fed into dynamic complex-valued edge embedding (DCEE) layers
and complex-valued node embedding (CNE) layers for dynamic edge and node embedding. The gated complex-valued graph
convolution (GCGC) layer is applied to aggregate complex-valued tensors attentively.

Fig. 3. The demonstration of the gating mechanism, which
attentively aggregates cross-axis information.

Readout Function. Given a complex-valued feature vec-
tor, the complex-valued numbers are readout into real num-
bers by: Readout(x) =

√
Re(x)2 + Im(x)2

2.3. Gated Complex-valued Graph Convolution

The gating mechanism has become a common tool in a neural
network that facilitates the learning of longer-term relation-
ships and protects the cell state from undesired updates [15].
Intuitively, the gates determine the amount of a signal to pass.
In this study, it is implemented by an attention mechanism as
an element-wise product and is applied to the graph message
passing, resulting in the scaling of the intra-axis and inter-axis
aggregation.

gr→i = σ(W11 · Re(z) +W12 · ẑ+ b1)

gi→r = σ(W21 · Im(z) +W22 · ẑ+ b2)
(5)

where W and b are learnable parameters. gr→i and gi→r

denote gates for the aggregation from real to imaginary and
from imaginary to real respectively. And σ is the sigmoid
activation function. Notably, z represents the transition state

representations, where each element z(j) determines the j-
th node by: z(j) = ||{Avgk∈N (j)(xk),Maxk∈N (j)(xk)}.
While for ẑ, it is obtained by

√
Re(xk)2 + Im(xk)2.

Moreover, in this study, we discard the spectral graph con-
volution and apply the spatial aggregation to simplify. To
summarize, the GCGC layer can be formulated with eq (4)
and (5) as:

Hl = σ(L ⋆Hl−1W) (6)

L ⋆Hl−1 = Re(L)Re(Hl−1)− Im(L) Im(Hl−1)

+ gr→i ⊙ i Im(L)Re(Hl−1) + gi→r ⊙ iRe(L) Im(Hl−1)
(7)

3. EXPERIMENTS AND RESULTS

3.1. Dataset

Two datasets cover subjects with fMRI and DTI images are
included for evaluation of the classification performance:

ADNI Dataset1: 114 subjects from the ADNI database
are used for the prediction of the early stage of AD. 51 healthy
controls (HC) and 63 mild cognitive impairment (MCI) diag-
nosed at baseline were included.

XHCMU Dataset [17]: The subjects in this dataset were
recruited from the Xuanwu Hospital of Capital Medical Uni-
versity, including 70 HCs and 85 Parkinson’s Disease (PD).

The fMRI and DTI images were pre-processed by ref-
erence to the standard fmriprep pipeline and MRtrix3. The
mean time series of each region is extracted and calculated
by the Pearson Correlation to construct the functional net-
work. The number of streamlines representing the connec-
tion strength between each pair of regions is used to construct
the structural network. The Schaefer-100 atlas is applied for
mapping brain regions, where m = 100.

1http://www.adni-info.org/
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Table 1. Classification results on two tasks in terms of accuracy (Acc %), sensitivity (Sen %), specificity (Spe %), and area
under the curve (AUC %). The standard deviation cross folds are listed.

ADNI XHCMU
Type Acc Sen Spe AUC Acc Sen Spe AUC

BrainNetCNN [16] CNN 74.4±9.6 72.8±16.1 77.7±14.0 76.7±11.5 75.6±9.7 77.6±16.5 87.9±9.3 77.6±10.7
TD&MLP Tensor, NN 74.2±13.4 86.1±13.0 77.1±16.1 79.4±11.6 76.3±9.1 73.6±9.3 89.8±10.4 79.9±6.0
CP&MLP Tensor, NN 82.6±10.2 93.1±12.4 81.4±14.9 81.2±15.1 77.8±5.3 78.9±12.5 91.0±14.6 80.5±8.3

M-GCN [4] GNN 78.3±11.0 84.3±11.9 77.3±14.7 70.5±14.5 81.3±4.6 80.0±7.6 86.1±9.9 75.4±10.2
HGNN [7] GNN 82.0±7.6 79.0±8.1 90.8±14.2 79.6±10.6 77.7±9.8 75.3±7.5 89.3±9.8 80.3±12.2

DHGNN [8] GNN 84.8±5.9 83.6±11.0 86.6±11.7 86.6±7.9 78.1±6.8 80.5±10.2 83.7±12.3 81.2±4.4
Ours Tensor, GNN 88.7±6.5 94.1±7.3 86.8±8.4 90.6±7.0 85.0±5.0 80.0±6.7 90.4±4.9 86.6±6.9

3.2. Implementation Details

For better comparison of the small data sets, 10-fold cross-
validation is applied for evaluation. The learning rate is set
as 3e − 4, and the weight decay is 5e − 5. All the models
are trained for 600 epochs and would be early stopped when
the loss has not been decreased for 50 epochs. We trained the
models on one NVIDIA 2080-Ti GPU. Within the network,
a complex-valued graph convolution group is comprised of a
DCEE layer and a CNE layer, followed by a complex-valued
leaky ReLU activation and a complex-valued dropout layer.
Finally, a three-layer multi-layer perception is applied for
classification. In this study, the number of complex-valued
graph convolution groups and hidden size is decided within a
grid search of (1, 4) and {16, 32, 48, 64} respectively.

We leverage BrainNetCNN [16] as a baseline, which
is a state-of-the-art CNN method for brain network learn-
ing. Tensor-based approaches including Tucker (TD) and
CP decomposition are implemented. The decomposed fea-
tures are fed into a multi-layer perception for classification.
The rank is decided with a grid search. Moreover, several
well-established graph models are leveraged for comparison,
including M-GCN [4], HGNN [7], and DHGNN [8]. For all
the experiments, we evaluated the performance by diagnosis
accuracy (Acc), sensitivity (Sen), specificity (Spe), and Area
Under the Curve (AUC).

3.3. Multi-modal Graph Classification Performance

The classification results are listed in Table 1, where the best
results are shown in bold, and the second best are with under-
line. We can see that CP decomposition outperforms Brain-
NetCNN, while TD performs worse on the ADNI dataset.
The tensor-based methods are simple and efficient ways of
learning multimodal data. Compared with these approaches,
the graph-based models can generally improve the classifica-
tion performances on both two datasets. Moreover, our ap-
proach outperforms the state-of-the-art graph models, where
3.9%/3.7% improvements in accuracy and 4%/5.4% improve-
ments in AUC are achieved in the ADNI/XHCMU datasets.
This can be attributed to both complex-valued tensor and
graph networks in modeling multiple modalities.

Fig. 4. Ablation results in terms of the complex-valued tensor
and the gating mechanism in multi-modal modeling.

3.4. Ablation study

Moreover, we perform ablation studies on the complex-
valued tensor and gating mechanism in graphs. We compared
the proposed complex-valued tensor with convolution and
embedding for evaluating the power of modeling multimodal
data. As is shown in Figure 4 A), our complex-valued tensor
approach significantly outperforms other forms of learning
in both ADNI and XHCMU datasets. This indicates that the
complex-valued tensor plays a significant role in multimodal
learning. Moreover, Figure 4 B) demonstrates the comparison
results on the gating mechanism. With the gating mechanism,
our proposed TC-GNN achieves consistent improvements by
2.8% and 1% on two datasets respectively.

4. CONCLUSION

In this paper, we propose a novel paradigm, called a complex-
valued tensor graph, by introducing complex-valued tensors
into graphs for coupling multimodal complementary rep-
resentations. The experimental results on two real-world
datasets demonstrate that our proposed model achieves
promising results in terms of brain disorder classification.
Consistent improvements are achieved on both two tasks
compared with the current state-of-the-art baselines, indicat-
ing that our proposed TC-GNN is feasible to enrich represen-
tations of multiple modalities and provides a powerful way of
multimodal learning.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 17,2023 at 08:36:46 UTC from IEEE Xplore.  Restrictions apply. 



5. REFERENCES

[1] Juliette Valenchon and Mark Coates, “Multiple-graph
recurrent graph convolutional neural network architec-
tures for predicting disease outcomes,” in ICASSP
2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 3157–3161.

[2] Jiayue Cai, Aiping Liu, Taomian Mi, Saurabh Garg,
Wade Trappe, Martin J McKeown, and Z Jane Wang,
“Dynamic graph theoretical analysis of functional con-
nectivity in parkinson’s disease: The importance of
fiedler value,” IEEE journal of biomedical and health
informatics, vol. 23, no. 4, pp. 1720–1729, 2018.

[3] Makoto Fukushima, Richard F Betzel, Ye He, Mar-
tijn P van den Heuvel, Xi-Nian Zuo, and Olaf Sporns,
“Structure–function relationships during segregated and
integrated network states of human brain functional con-
nectivity,” Brain Structure and Function, vol. 223, no.
3, pp. 1091–1106, 2018.

[4] Niharika Shimona Dsouza, Mary Beth Nebel, Deana
Crocetti, Joshua Robinson, Stewart Mostofsky, and
Archana Venkataraman, “M-gcn: A multimodal graph
convolutional network to integrate functional and struc-
tural connectomics data to predict multidimensional
phenotypic characterizations,” in Medical Imaging with
Deep Learning. PMLR, 2021, pp. 119–130.

[5] Selen Atasoy, Isaac Donnelly, and Joel Pearson, “Hu-
man brain networks function in connectome-specific
harmonic waves,” Nature communications, vol. 7, no.
1, pp. 1–10, 2016.

[6] Yan Wang, Yanwu Yang, Xin Guo, Chenfei Ye, Na Gao,
Yuan Fang, and Heather T Ma, “A novel multimodal
mri analysis for alzheimer’s disease based on convolu-
tional neural network,” in 2018 40th Annual Interna-
tional Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). IEEE, 2018, pp. 754–757.

[7] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong
Ji, and Yue Gao, “Hypergraph neural networks,” in
Proceedings of the AAAI conference on artificial intelli-
gence, 2019, vol. 33, pp. 3558–3565.

[8] Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao,
and Yue Gao, “Dynamic hypergraph neural networks.,”
in IJCAI, 2019, pp. 2635–2641.

[9] Fabien Lotte, Laurent Bougrain, Andrzej Cichocki,
Maureen Clerc, Marco Congedo, Alain Rakotoma-
monjy, and Florian Yger, “A review of classification
algorithms for eeg-based brain–computer interfaces: a
10 year update,” Journal of neural engineering, vol. 15,
no. 3, pp. 031005, 2018.

[10] Bilal Ahmad, Liana Khamidullina, Alexey A Korobkov,
Alla Manina, Jens Haueisen, and Martin Haardt, “Joint
model order estimation for multiple tensors with a cou-
pled mode and applications to the joint decomposition
of eeg, meg magnetometer, and gradiometer tensors,”
in ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 1186–1190.

[11] Justin Dauwels, K Srinivasan, Reddy M Ramasubba,
and Andrzej Cichocki, “Multi-channel eeg compression
based on matrix and tensor decompositions,” in 2011
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2011, pp. 629–
632.

[12] Bhaskar Sen and Keshab K Parhi, “Extraction of com-
mon task signals and spatial maps from group fmri us-
ing a parafac-based tensor decomposition technique,”
in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 1113–1117.

[13] Trabelsi Chiheb, O Bilaniuk, D Serdyuk,
et al., “Deep complex networks,” in Interna-
tional Conference on Learning Representations.
https://openreview.net/forum, 2017.

[14] Kanhao Zhao, Boris Duka, Hua Xie, Desmond J Oathes,
Vince Calhoun, and Yu Zhang, “A dynamic graph con-
volutional neural network framework reveals new in-
sights into connectome dysfunctions in adhd,” Neuroim-
age, vol. 246, pp. 118774, 2022.

[15] Moritz Wolter and Angela Yao, “Complex gated recur-
rent neural networks,” Advances in neural information
processing systems, vol. 31, 2018.

[16] Jeremy Kawahara, Colin J Brown, Steven P Miller,
Brian G Booth, Vann Chau, Ruth E Grunau, Jill G
Zwicker, and Ghassan Hamarneh, “Brainnetcnn: Con-
volutional neural networks for brain networks; towards
predicting neurodevelopment,” NeuroImage, vol. 146,
pp. 1038–1049, 2017.

[17] Yanwu Yang, Chenfei Ye, Junyan Sun, Li Liang, Haiyan
Lv, Linlin Gao, Jiliang Fang, Ting Ma, and Tao Wu, “Al-
teration of brain structural connectivity in progression of
parkinson’s disease: a connectome-wide network analy-
sis,” NeuroImage: Clinical, vol. 31, pp. 102715, 2021.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 17,2023 at 08:36:46 UTC from IEEE Xplore.  Restrictions apply. 


