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Abstract—Multi-modal neuroimaging technology has greatlly
facilitated the efficiency and diagnosis accuracy, which pro-
vides complementary information in discovering objective disease
biomarkers. Conventional deep learning methods, e.g. convolu-
tional neural networks, overlook relationships between nodes and
fail to capture topological properties in graphs. Graph neural
networks have been proven to be of great importance in modeling
brain connectome networks and relating disease-specific patterns.
However, most existing graph methods explicitly require known
graph structures, which are not available in the sophisticated
brain system. Especially in heterogeneous multi-modal brain
networks, there exists a great challenge to model interactions
among brain regions in consideration of inter-modal dependen-
cies. In this study, we propose a Multi-modal Dynamic Graph
Convolution Network (MDGCN) for structural and functional
brain network learning. Our method benefits from modeling
inter-modal representations and relating attentive multi-model
associations into dynamic graphs with a compositional corre-
spondence matrix. Moreover, a bilateral graph convolution layer
is proposed to aggregate multi-modal representations in terms of
multi-modal associations. Extensive experiments on three datasets
demonstrate the superiority of our proposed method in terms
of disease classification, with the accuracy of 90.4%, 85.9%
and 98.3% in predicting Mild Cognitive Impairment (MCI),
Parkinson’s disease (PD), and schizophrenia (SCHZ) respectively.
Furthermore, our statistical evaluations on the correspondence
matrix exhibit a high correspondence with previous evidence of
biomarkers.

Index Terms—Graph Neural Network, Multi-modal Graph
Network, Diagnosis, Dynamic Graph

I. INTRODUCTION

Recently, computer-aided diagnosis technologies using ad-
vanced neuroimaging developments have been widely adopted

* Corresponding authors.

for medical scenarios, e.g. disease diagnosis, and medical im-
age segmentation. Among these neuroimaging tools, functional
Magnetic Resonance Imaging (fMRI) and Diffusion Tensor
Imaging (DTI) have become promising candidates for brain
study. Functional MRI is a stimulus-free acquisition used
to track changes in co-activation across brain regions. DTI
captures the directional diffusion of water molecules as a proxy
for structural connectivity. Derived functional and structural
connectivity is feasible to model the brain as a network by
representing brain parcellations along with their structural
or functional connectivity. The brain connectome provides a
more holistic view by modeling the entire human brain and
characterizes individual subject behavior, cognition, and men-
tal health [1]. There is mounting evidence that demonstrates
functional and structural connectivity could be used to identify
predictive biomarkers for brain disorders such as Alzheimer’s
disease (AD), Schizophrenia (SCZ), and Parkinson’s disease
(PD) [2]–[4].

Medical image-based diagnosis is a challenging task due
to the sophisticated structure of brain systems and subtle
lesions, which might be overlooked by medical experts [5].
Neuroimage processing with multiple modalities is feasible to
assess and develop distinctive biomarkers from multiple fields.
Previous studies link the functional signals with structural
pathways for mediating and suggest that functional connec-
tivity and structural connectivity might be mediated by each
other [6]–[8]. Recently, state-of-the-art graph neural networks
(GNN) have achieved promising performance in multi-modal
graph-structural data learning [8]–[10]. However, most existing
GNNs built graphs on the originally derived connectivity, and
fail to sufficiently model sophisticated associations among
nodes. This issue is even aggravated when modeling multi-
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modal brain networks since there exist heterogeneous struc-
tures and representations among multiple modalities. How-
ever, most existing studies potentially ignore these issues and
achieves sub-optimal results.

In terms of this, we propose a Multi-modal Dynamic
Graph Convolution Network (MDGCN) to model multi-modal
complementary associations by dynamic graphs. Our net-
work allows for tighter coupling of context between multiple
modalities by representing functional and structural connec-
tome dynamically and providing a compositional space for
reasoning. Specially, we first parse both the functional and
structural into dynamic graphs with embedded representations
as nodes. A correspondence factor matrix is introduced to
capture the corresponding values of each pair of nodes be-
tween modalities, which is denoted as the adjacency matrix.
And multimodal representations are aggregated by a Bilateral
Graph Convolution (BGC) layer for complementary message
passing. Extensive experiments on three datasets demonstrate
that our proposed method outperforms other baselines in the
prediction of Mild Cognitive Impairment (MCI), Parkinson’s
Disease (PD), and Schizophrenia (SCHZ) with the accuracy
performances of 90.4%, 85.9%, and 98.3% respectively.

The rest of our paper is structured as follows. We would
like to review competitive methods in terms of connectome
study and multi-modal models in Section II. The details of
the proposed model are introduced in Section III. Section IV
describes the experiments of our proposed model in disease
classification on 3 datasets and provides the experimental
results. Section V draws the conclusions of the work.

II. RELATED WORKS

A. Brain connectome network study

With the flexibility of uncovering the complex biological
mechanisms using rs-fMRI and DTI, deep learning methods
have been widely coordinated to examine and analyze the
patterns. Convolution neural networks (CNN) and graph neural
networks (GNN) have become useful tools for brain con-
nectome embedding, where high dimensional neuroimaging
features are embedded into a low dimensional space that pre-
serves their context as well as capturing topological attributes.
BrainNetCNN is proposed to take the brain connectome net-
works as grid-like data, and measure the topological locality in
connectome [11], which has achieved promising performance
for disease diagnosis and phenotype prediction.

Apart from convolution neural networks, graph neural net-
works retain a state that can represent information about
the neighbors and provides a powerful way to explore the
dependencies between nodes. However, applying a graph
network directly to the brain connectome is problematic. On
one hand, brain networks have sophisticated and non-linear
structures. For example, most existing methods apply the
derived functional connectivity as the adjacency matrix, which
is measured linearly between two brain regions. These de-
rived linear connectivities fail to model complex associations
between brain regions. On the other hand, graph convolution
networks explicitly require a known graph structure, which is

not available in the brain connectome. Several strategies have
been proposed to tackle the unknown structure issue [12]–[14].
Especially, dynamic graph convolution methods are proposed
to model graph structures adaptively to characterize intrinsic
brain connectome representations and achieve promising per-
formances in prediction [9], [15]. Nevertheless, there is still a
lack of studies to tackle the multi-modal connectome graphs.

B. Multi-modal connectome learning

Existing multi-modal connectome learning methods can
be categorized into two classes: feature learning methods
and deep learning methods. Compared with feature learning
methods [16]–[18] that leverage feature selection to identify
disease-related features, deep learning methods are feasible
to capture intrinsic meaningful representations and achieves
better performances. [19] devised a calibration mechanism to
fuse fMRI and DTI information into edges. [20] proposed
to perform a two-layer convolution on the fMRI and DTI
data simultaneously. [8] regularizes convolution on functional
connectivity with structural graph Laplacian. However, most
of these studies lack the ability to sufficiently model com-
plementary associations between modalities, since there is a
lack of joint compositional reasoning over both functional and
structural connectome networks.

III. METHOD

The proposed Multi-modal Dynamic Graph Convolution
Network (MDGCN) aims at parsing multi-modal representa-
tions into dynamic graphs and performing graph aggregation
for message passing. In this section, we would like to firstly
introduce the brain graph definition, and then the detail of the
proposed method.

A. Preliminaries

Brain network graph: The brain networks derived from
neuroimages are usually symmetric positive define (SPD)
matrices X ∈ RM×M , where M denotes the number of
brain regions. Each element xi,j denotes a co-variance or
connectivity strength between the regions. The brain network
is usually formulated as an undirected graph G = (V,E,H),
where V is a finite set of vertices with |V | = M and
E ∈ RM×M denotes the edges in the graphs. The nodes and
edges are represented by the derived SPD matrices X . For each
vertex vi, the node feature vector hi is constructed by the i-th
row or column in the SPD matrix hi = {xi,k|k = 1, 2, ...,M}.
The edges are represented by the matrices directly, of which
an element is assigned by ei,j = xi,j .

Multi-modal brain graph: The multi-modal brain graphs
are constructed by the functional and structural brain networks
derived from fMRI and DTI respectively. An input Ĝ is ex-
pressed by a tuple of graphs as Ĝ = {Gs, Gf}, where Gs and
Gf denote the structural and functional brain network graphs
respectively. Formally, given a set of graphs {Ĝ1, Ĝ2, ..., ĜN}
with a few labeled graph instances, the aim of the study
is to decide the state of the unlabeled graphs as a graph
classification task.



Fig. 1. Illustration of the proposed MDGCN method, where GRU denotes a gated recurrent unit for node representation learning, GCN denotes a graph
convolution layer. The multi-modal representations are cross embedded and fed into a bilateral graph convolution module. Message passing on the graphs are
guided by the correspondence matrix.

Dynamic graph: Since there remain unknown node re-
lationships in the multi-modal graphs, applying the graph
convolution on the multi-modal graphs is problematic. The
dynamic graphs leverage the dynamic mechanism to model
multi-modal node representations and interactions by learning
mappings: fV : X → V, fE : X → E. And the learned graphs
are denoted as dynamic graphs.

B. Dynamic Multi-modal Graph Mapping

The key to brain graph mapping is how to parse multi-
modal graph representations. In this study, we propose to
model the node representations as a sequence via the Gated
Recurrent Unit (GRU) [21], where the gating mechanism
allows for the learning of sequential relationships and protect
the learning from undesired updates [22]. The GRU layers take
the input brain network matrix X ∈ RM×M as a sequence
with M nodes and M features. Formally, given an input
X = {Xf , Xs}, where Xf and Xs denotes the functional
and structural brain networks, the node features are embedded
by:

hsj = GRU(x̂s), hfj = GRU(x̂f ) (1)

Specially, given an input x̂, the GRU operation on each parcel
k ∈ [1,M ] is formulated as:

zk = σ(Wz · [ok−1, x̂k]) (2)

rk = σ(Wr · [ok−1, x̂k]) (3)

ĥk = tanh(W · [rk ∗ ok−1, x̂k]) (4)

ok = (1− zk) ∗ ok−1 + zk ∗ ôk (5)

where, x̂k denotes the input vector corresponding to the
k-th brain region, and zk, rk are the update gate and reset

gate respectively. With the embedded hfj and hsj , a soft
correspondence matrix Φ is obtained by:

Φ =
hfj (hsj)

T + hsj(h
f
j )T

2
(6)

Each row vector in Φ is a probability distribution over
potential correspondences to corresponding nodes. The matrix
can be regarded as the scores for measuring the goodness of
matches between nodes in two modalities. A sinkhorn function
is applied to normalize the matrix, which satisfies doubly
stochastic, where

∑M
j Φ̂i,j = 1.

By obtaining the normalized correspondence matrix Φ̂, we
can project the representations from one source into another
source by:

ĥf = Φ̂Ths (7)

ĥs = Φ̂Thf (8)

With the obtained embedded representations ĥf and ĥs, the
dynamic node features can be built by {ĥf , hf} or {ĥs, hs},
which represents the transformation representations of func-
tional/structural field. Moreover, we formulate the normalized
correspondence matrix Φ̂ as the dynamic adjacency matrix.

C. Bilateral Graph Convolution

In this study, a Bilateral Graph Convolution (BGC) is
proposed to perform convolution on the multi-modal graphs.
To tackle the heterogeneous features between modalities, the
BGC module applies convolutions on each field to aggregate
representations of each single modality separately. Moreover,
we implement the spatial aggregation on the graphs for mes-
sage passing instead of spectral graph convolution. Since the
brain network is fully connected, graph spatial convolution
as well as spectral graph convolutions are able to aggregate
global information. In this way, the graph spatial convolution
is formulated with Φ̂ as:



Hf
l+1 = σ(Φ̂Hf

l W
f
l ),where Hf

0 = ||{ĥf , hf} (9)

Hs
l+1 = σ(Φ̂Hs

l W
s
l ),where Hs

0 = ||{ĥs, hs} (10)

|| denotes a concatenation operation, σ denotes a sigmoid
activation function, and W is a learnable matrix for improving
node representations. The outputs of the BGC layer are further
combined as a feature vector, and fed into a multi-layer
perception for classification.

D. Optimization

The final output is further fed into a three-layer multi-layer
perception classifier followed with a ReLU activation function
and a dropout layer. A softmax function is implemented for
probability output. The loss function is formulated as the
cross-entropy function. To summarize, the detail of the process
of our proposed DMGN is shown in Algorithm 1:

Algorithm 1: Dynamic Multi-modal Graph Network
Input: Multi-modal brain networks

{Ĝ1, Ĝ2, Ĝ3, ..., Ĝn},where Ĝ = {Gs, Gf};
For each graph G = (V,E,X)

Output: Prediction y of the test set
1 Calculate dynamic node features by GRU:

hs = GRU(x̂s), hf = GRU(x̂f );
2 Calculate the correspondence matrix:

Φ = 1
2h

f
j (hsj)

T + 1
2h

s
j(h

f
j )T ;

3 Normalize Φ into Φ̂ to satisfy doubly stochastic;
4 Obtain the cross-modality mapping representations:
5 ĥf = Φ̂Ths;
6 ĥs = Φ̂Thf ;
7 for l=1:L do
8 Hf

l = σ(Φ̂Hf
l−1W

f
l−1), where Hf

0 = ||{ĥf , hf};
9 Hs

l = σ(Φ̂Hs
l−1W

s
l−1), where Hs

0 = ||{ĥs, hs};
10 end
11 Readout HL = ||{Hf

L, H
s
L};

12 y = softmax(HL)

IV. EXPERIMENTS AND RESULTS

A. Datasets

In this study, three real-world datasets are employed in this
study, where functional MRI and DTI are aggregated. All the
datasets are enrolled for multi-modal graph classification.

ADNI Dataset1: The ADNI dataset is a longitudinal mul-
timodal neuroimaging dataset. In this study, we collected 114
subjects that were diagnosed at the baseline for evaluation
including 51 healthy controls (NC) and 63 mild cognitive im-
pairment (MCI). Notably, MCI is considered to be a significant
stage for preclinical diagnosis of AD.

Xuanwu dataset [2]: A total of 155 subjects are included in
this dataset, where 70 HCs and 85 subjects with Parkinson’s

1http://www.adni-info.org/

Disease (PD) were recruited from the Movement Disorders
Clinic of the Xuanwu Hospital of Capital Medical University.
The patients were diagnosed according to the MDS Clinical
Diagnostic Criteria for Parkinson’s disease.

CHUV dataset [23]: The MRI data were obtained from the
Service of General Psychiatry at the Lausanne University Hos-
pital including 27 healthy participants and 27 schizophrenic
patients. All of the patients were diagnosed with schizophrenic
disorders after meeting the DSM-IV criteria.

B. Preprocessing

All the fMRI images were pre-processed by reference to
the Configurable Pipeline for the Analysis of Connectomes
(CPAC) pipeline [24], including skull striping, slice timing
correction, motion correction, global mean intensity normal-
ization, nuisance signal regression with 24 motion param-
eters, and band-pass filtering (0.01-0.08Hz). The functional
images were finally registered into a standard anatomical space
(MNI152). The mean time series for a set of regions were
computed and normalized into zero mean and unit variance.
The Pearson Coefficient Correlation is applied to measure the
functional connectivity.

The DTI images were pre-processed by image denoising,
head motion, eddy-current, susceptibility distortion, and field
inhomogeneity correction by MRtrix 3 [25]. The fiber orien-
tation distributions were estimated by constrained spherical
deconvolution [26]. We performed the 2-nd order Integration
over Fiber Orientation Distributions [27] to reconstruct 10 mil-
lion streamlines. A Spherical-deconvolution Informed Filtering
of Tractograms [28] was applied to reduce the streamline count
to 5 million. The number of streamlines connecting each pair
of brain regions was used to construct the structural network.

All the pre-processed fMRI and DTI images were mapped
by the brain template for parcellations. In this study, the
images in ADNI and Xuanwu datasets were segmented by
the Schaefer atlas [29], which was parceled by a gradient
weighted Markov random field approach that identified 100
cortical parcels. CHUV data were parcellated into 83 cortical
and subcortical areas by the Freesurfer [30].

C. Implementation details

In our implementation, the number of layers of graph
convolution is decided in a grid search from 1 to 4. The
output of graph convolution is further fed into a 3-layer multi-
layer perception classifier followed by a leaky ReLU activation
function and a dropout layer. The learning rate is set as 3e-4,
and the weight decay is 5e-5. All the models in this study
are trained for 600 epochs and would be early stopped then
the loss has not been decreased for 100 epochs. We trained
the models with PyTorch on two NVIDIA 2080-Ti GPUs.
For better comparison, 10-fold cross-validation was applied
for evaluation by randomly sampling 90% data for training
and 10% for testing in each fold. For all experiments, we
evaluated the performance in terms of the diagnosis accuracy
(Acc), precision (Prec), and Area Under the Curve (AUC).

http://www.adni-info.org/


TABLE I
MULTI-MODAL CLASSIFICATION RESULTS ACROSS 10-FOLD CROSS VALIDATION (MEAN %± STD%) IN TERMS OF ACCURACY (ACC), PRECISION (PREC)

AND AREA UNDER THE CURVE (AUC). THE BEST RESULTS FOR EACH COLUMN IS SHOWN IN BOLD, AND THE SECOND BEST IS IN UNDERLINE.

Method
ADNI Xuanwu CHUV

Acc Prec AUC Acc Prec AUC Acc Prec AUC

SVM 63.2±9.5 60.8±6.5 68.3±13.6 62.6±3.3 90.6±2.5 69.8±5.1 64.7±4.2 63.4±7.0 72.9±15.9
M-MLP 80.6±9.9 76.29±12.3 83.9±9.8 73.8±7.4 70.2±6.4 73.6±9.7 82.7±11.1 80.0±18.9 82.4±11.6

BrainNetCNN 82.3±11.5 82.1±14.1 82.8±9.5 75.6±9.7 71.4±12.1 77.6±10.7 92.7±9.0 95.0±10.0 94.7±8.7
M-GCN 83.3±7.4 80.9±15.9 81.7±13.6 81.3±4.6 77.1±11.3 75.4±10.2 90.7±12.9 94.2±11.8 86.8±19.7
HGNN 81.1±6.5 84.8±14.2 85.6±6.4 77.7±9.8 76.9±16.2 80.3±12.2 96.0±8.0 100.0±0.0 98.9±0.9

DHGNN 84.4±6.0 84.2±12.3 86.7±5.4 78.2±6.8 80.1±13.1 80.8±8.1 90.7±9.4 83.3±17.9 92.4±10.8
DMGN(Ours) 90.4±2.4 91.6±6.9 88.2±6.6 85.9±4.5 85.5±6.0 83.1±8.1 98.3±5.0 100.0±0.0 99.2±1.7

Fig. 2. The effect of the number setting for the GRU layer and Bilateral
Graph Convolution layer.

D. Competitive methods

In this study, we compare our proposed MDGCN with
well-estimated graph methods and models that are designed
specifically for brain connectome. These methods include:

SVM and MLP. The conventional machine learning meth-
ods of the support vector machine and multi-layer perception
are compared as a baseline of classification. The upper matrix
of the brain networks are fed into the classifiers to give a score
for each subject. The layer number of MLP is searched from
1 to 4.

BrainNetCNN [11]. BrainNetCNN is a CNN-based frame-
work for brain network study with promising performances in
brain network study. The model is implemented by multiple
convolution layers to learn the multi-modal inputs.

M-GCN [8]. M-GCN is a multi-modal graph convolution
network that aggregates functional representations by regular-
izing with structural graph Laplacian, which outperforms sev-
eral stat-of-the-art baselines in predicting phenotypic values.

HGNN [31]. A hypergraph graph neural network is im-
plemented to encode hyper structure. The multi-modal brain
networks can be fed into the HGNN as a nature of hyperedges.

DHGNN [9]. The dynamic graph hyperneural network
extends the HGNN into a dynamic graph. These two methods
are implemented to compare with the hyperedge mechanism
for modeling multi-modal data.

Fig. 3. Comparison results in terms of the node embedding and cross graph
convolution.

E. Parameter setting

The settings of the GRU layer and the bilateral graph
convolution layer are discussed in Figure 2, where the results
on the ADNI, Xuanwu and CHUV datasets are shown in blue,
yellow, and green respectively. The prediction performances
would slightly change with the setting on the layer number
of GRU. Moreover, as the layer number of bilateral graph
convolution increases, the performance trends to increase
firstly and then decrease. We suspect that this is caused by
the global aggregation of the graph convolution, which leads
to over-smoothing on graphs.

F. Multi-modal graph classification performance

Table I demonstrates the comparison results, where the best
results are shown in bold, and the second best are in underline.
It is shown that conventional machine learning SVM achieves
the worst performance. This indicates that the multi-modal
graphs might have nonlinear and heterogeneous structures,
and a simply linear classifier fails to distinguish the brain
disease state. Moreover, compared with SVM, multi-layer
perception improves the performances significantly, where
nonlinear representations are deeply embedded with multiple
layers. BrainNetCNN and M-GCN achieve further improve-
ments, showing that deep learning methods such as CNN
and GNN are feasible to capture and learn more meaningful
representations. In addition, the hypergraph neural network
HGNN performs worse than BrainNetCNN and M-GCN on
the ADNI and Xuanwu datasets. While DHGNN outperforms



Fig. 4. Statistical results (−log10p) on the correspondence matrix, where only significant regions are displayed. The right posterior cingulate gyrus in the
default mode network, the left somatomotor network are located in MCI and PD respectively.

these baseline models on the ADNI and Xuanwu datasets,
where the dynamic mechanism might contribute to richer
representations. Moreover, our proposed MDGCN achieves
the best performances among all the competitive models in
terms of the accuracy, precision and AUC, with 6.0%, 4.6%
and 2.3% improvements on the ADNI, Xuanwu and CHUV
datasets respectively. We suspect that the improvements are
caused by the powerful cross-modality correspondence rea-
soning that captures inter-modal dependencies to aggregate
multi-modal representations.

G. Ablation studies

Ablation studies were carried out to measure the importance
of the components in the MDGCN, including edge-aware
convolution and the correspondence matrix. Figure 3 plots
the comparison results on the way of node embedding and
the correspondence matrix. On one hand, the GRU for node
embedding is compared with other node embedding methods,
including multi-layer perception, graph embedding, and LSTM
[22]. As is shown in Figure 3 A), the LSTM outperforms
the graph embedding and MLP methods. Moreover, the GRU
performs better than LSTM on the ADNI and Xuanwu
datasets. The results demonstrate that the gating mechanism in
LSTM and GRU could relate long-term attentive relationships,
capture more meaningful node representations, and protect the

node representations from undesired updates, which plays a
key role in dynamic graph node representation learning. The
graph embedding and MLP embed all the node features in
the same and fails to consider the importance of connectivity
patterns. On the other hand, we also evaluated the effect
of the correspondence matrix by comparing with the single
domain aggregation. In detail, the equation (6) is modified as
Φ = hfj (hsj)

T and Φ = hsj(h
f
j )T to calculate the function-

structure and structure-function transformation respectively.
And only a single domain aggregation is read out by HL = Hf

L

or HL = Hs
L. Figure 3 B) displays the comparison results. It

is shown that results of graph aggregations in the functional
domain and structural domain are comparable in terms of the
accuracy. Moreover, our method incorporating cross-domain
aggregation outperforms the single domain aggregation. This
indicates that the interplay between modalities might be a key
in modeling multi-modal representations.

H. Biological explanation

The correspondence matrices attentively model the multi-
modal interactions among regions, which are feasible to be
applied to pinpoint the key brain biomarkers for disease. In
this section, we extracted the correspondence matrix for each
subject and performed a group statistical analysis for the
explanation. The experiments were carried out on the ADNI



and Xuanwu datasets that consist of more than 100 subjects
for example, which could tell the power of the proposed
DMGCN in interpretation ability. In detail, we performed
the state-of-the-art statistical method, multi-distance multi-
variant regression (MDMR), for group comparison on the
correspondence matrix. The Bonferroni correction was applied
to control the false positive rate. And the p value < 0.05
after the correction was determined significant within the
experiments.

Figure 4 demonstrates the statistical analysis of the two
datasets, where the regions with significant differences (p
value< 0.05) are displayed with the value of −log10p. The
regions of the right posterior cingulate gyrus in the default
mode network and the left somatomotor were found in the
ADNI, and Xuanwu datasets respectively. Previous studies
demonstrate that the AD process has been hypothetically
explained by PCC hypofunction, due to the effect of the
degeneration of cingulum fibers [32]. And PCC hypofunction
could be caused by early PCC atrophy, which has been proven
to be a useful biomarker [33]. Moreover, Parkinson’s Disease
is shown to be beginning to develop somatomotor dysfunctions
with deficits in neocortical association areas [34]. Our findings
in the right posterior cingulate gyrus of the default mode
network, and the left somatomotor network coincide with these
previous studies, indicating that our proposed MDGCN could
locate meaningful and interpretative key biomarkers.

V. CONCLUSION

In this study, we propose a multi-modal dynamic graph
convolution network for disease diagnosis and classification,
which exploits a dynamic graph for tighter coupling of multi-
modal representations. The derived correspondence matrix
provides a compositional space for reasoning multi-modal
dependencies. The experimental results on three datasets
demonstrate that our proposed method is feasible to model
multi-modal graphs and outperforms other state-of-the-art
methods. Moreover, by performing statistical analysis on the
correspondence matrix, the high correspondence with previous
evidence of biomarkers exhibits the interpretation ability of
our proposed MDGCN, which provides a powerful way of
multi-modal brain network learning.
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