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ADECOR-Net: Improving COVID-19 Lung
Infection Segmentation Network with Amplified
and Decorrelated Low-level Features

Jiesi Hu, Yanwu Yang, Xutao Guo, Zhikai Chang, Hua Huang, Bo Peng, Ting Ma

Abstract—The Coronavirus Disease 2019 (COVID-19)
has become a global pandemic, causing millions of deaths
worldwide. Detecting lung infections from computed to-
mography (CT) images can aid in combating COVID-19.
Ground-glass opacities and pneumonic consolidations are
the most common features observed in the chest CT scans
of infected individuals. These infections are characterized
by high heterogeneity and unclear boundaries, making low-
level features crucial for segmentation. However, there is a
lack of deep learning models designed to explore the low-
level features of COVID-19 infection. To address this issue,
we propose a network with amplified and decorrelated low-
Level features (ADECOR-Net) for precise segmentation of
COVID-19 infection. ADECOR-Net comprises a channel re-
weighting strategy and a proposed decorrelation loss. The
channel re-weighting strategy improves the model’s abil-
ity to capture richer low-level features without increasing
model parameters. The decorrelation loss further reduces
the redundancy of captured features and enhances their
discriminative power. Comprehensive experiments were
conducted, and ADECOR-Net outperforms other methods
on two datasets, improving Dice scores by 2.5% and 2.9%.
Results highlight its potential for clinical use in precise
COVID-19 infection segmentation.

Index Terms— Deep learning, COVID-19 infection seg-
mentation, Low-level feature, Feature decorrelation

[. INTRODUCTION

SINCE its emergence in 2020, the coronavirus disease
(COVID-19) has spread to countries worldwide and was
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declared a pandemic by the World Health Organization in
March of that year [1], [2]. Despite various vaccination efforts,
the number of infected individuals continues to rise as the
virus mutates. The pandemic has underscored health disparities
within and between countries and will likely have a long-
term impact on global society [10]. COVID-19 has presented
significant challenges to daily life, the global economy, and
public health [4], making testing and diagnostic resources for
COVID-19 essential.

Studies have shown that the lungs are the primary target
for the virus infection which later spread to other parts of
the body [5]. As such, computed tomography (CT) imaging
of the lungs is a useful tool for diagnosing and monitor-
ing COVID-19 infection. Several characteristic patterns have
been identified in CT scans of COVID-19 patients, includ-
ing bilateral, peripheral, and basal predominant ground-glass
opacity (GGO), multifocal patchy consolidation, and crazy-
paving patterns with a peripheral distribution [6]. Ground-glass
opacities are defined as an increase in opacification of the lung
that does not obscure the blood vessels and airways, while
consolidation is defined as a homogeneous opacification that
obscures blood vessels and airway walls [7]. The crazy-paving
pattern can be explained as GGO with superimposed inter and
intralobular septal thickening. Chest CT images can be used to
assess the size and severity of these lesions, enabling disease
progression monitoring and treatment planning [8]. However,
manual annotation of these images is time-consuming and
impractical for the numerous suspected and confirmed cases.
Thus, the development of reliable Al-aided annotation tools is
imperative.

In the field of biomedical image analysis, identifying in-
fected regions is often treated as a segmentation task, with
Convolutional Neural Network (CNNs) being the most pow-
erful and commonly used approach today. The superiority of
deep learning in computer vision has been well-established
over the past few decades [11]. Several deep learning networks
were proposed for COVID-19 infection segmentation [12]-
[16].

Despite the advances in COVID-19 infection segmentation
using deep learning, there are still some challenges that need
to be addressed. One challenge is the small inter-class variance
between the infected region and the background, as shown in
Fig. 1. For instance, GGO boundaries often have low contrast
and blurred appearances, making it difficult to identify the
infected regions accurately. Thus, subtle textures of the blood
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Fig. 1: (a) and (b) show CT slices from COVID-19 Challenge [17] dataset and the COVID-19 CT dataset collected by the
Third People’s Hospital of Shenzhen respectivly. The green lines mark the location of the infections.

vessels and airways on the CT slices are the main reference
for radiologists when labeling the infected regions [7]. From
the perspective of image processing, low-level features such as
textures, edges, and intensity are the primary cues for identi-
fying infected regions. Therefore, capturing low-level features
is critical for effective segmentation. However, despite the
importance of low-level features, most existing models have
not fully explored how to better capture them. Additionally,
though high-level features can capture a considerable amount
of semantic information, they may be less useful for capturing
infected regions, which are characterized by high variability
in shape and location [15].

In this paper, we propose ADECOR-Net, an improved
network with amplified and decorrelating low-Level features,
based on our previous work [9]. To relate infected regions
precisely, ADECOR-Net increases the model capacity of cap-
turing low-level features by introducing a channel re-weighting
strategy that enlarges the shallow layers of the network. Fur-
thermore, to reduce redundancy and increase diversity among
captured low-level features, a novel regularization method
called decorrelation loss (Decor loss) is introduced. With the
help of Decor loss, the extracted low-level features achieve
stronger discriminative power, and the model performances
are further improved. Experimental results on the COVID-19
Challenge dataset [17] and a private COVID-19 CT dataset
demonstrate the effectiveness of our methods.

In this study, we extend our previous work [9] accepted by
IEEE International Symposium on Biomedical Imaging 2023
as follow. First, we optimize the normalization layer based

on the characteristics of CT slice segmentation (Section III-
A). Second, we develop layer-wised decorrelation loss due
to various representations from different layers (Section III-
C). Third, we validate our methods on an additional dataset
collected from diverse scenarios to ensure its robustness and
generalizability. Furthermore, to demonstrate the superiority of
our model, we conduct comprehensive comparisons with more
state-of-the-art models. We also provide extensive experiments
and in-depth discussions on the effectiveness of our channel
re-weighting strategy and decorrelation loss.
In summary, our paper offers the following contributions:

o« We propose a novel strategy for enhancing COVID-
19 infection segmentation through channel re-weighting
and decorrelating low-level features according to the
characteristics of the infection.

o A novel loss function, the Decor loss, is proposed to
reduce the correlation among feature channels, via the
construction of normalized channel dependencies and the
application of cross-entropy in dependency matrices.

o The state-of-the-art performance of our model was sub-
stantiated by conducting comprehensive experiments on
two datasets, which confirmed the efficacy of enhancing
low-level features.

Il. RELATED WORKS

In this section, we review the relevant literature on medical
image segmentation, COVID-19 infection segmentation, hand-
crafted low-level feature, and feature decorrelation methods.
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In the field of medical imaging, CNNs have been extensively
employed for the analysis of various modalities, including
CT, MRI, endoscopic videos, and X-ray images [23]-[26].
Deep learning networks, such as Deeplab [27], U-net [28],
fully convolutional network (FCN) [29] and transformer-based
models [30], [31], have been proposed and demonstrated
promising results. Among these models, U-net has gained sig-
nificant attention due to its simple and easy-to-train structure.
Several modified versions of U-Net, such as Res-UNet [32],
UNet++ [33], and Attention U-Net [34], have been developed,
and these models have achieved state-of-the-art performance
in various medical imaging applications. In this study, we
build our model based on Res-UNet, which includes residual
connections to avoid the problem of gradient vanishing.

In recent years, several segmentation networks have been
proposed for COVID-19 infection segmentation. Inf-Net [12]
emphasizes edge information of the lung and introduces spe-
cific attention and multi-scale mechanisms. [13] conducted a
comprehensive comparison of the performance of U-net and
SegNet on COVID-19 two-class and multi-class segmentation
tasks. To add spatial attention to the model, [14] proposed a
network with multiple attention gates located on the decoder. A
contour-aware attention decoder CNN has also been proposed
to precisely segment infected tissues by leveraging the crucial
boundary and shape information [18]. Based on Unet++,
[35] built the squeeze excitation residual module and added
atrous spatial pyramid pooling to achieve better performance.
CHS-Net [15] developed a hierarchical segmentation model
for segregating the coronavirus-infected areas and applied
spectral pooling to efficiently reduce the spatial dimension of
feature maps. Moreover, [16] proposed a two-stream model
that separates the texture and structure components of the
image to allow the model to observe different components
of the image separately. Although some studies have tried to
enhance edge information to achieve better performance, such
as Inf-Net [12] and [18], the effectiveness of this approach
may be limited due to the blurred boundary of the infections.
In our study, we propose an effective way to capture infection
characteristics by enhancing the low-level features.

The extraction of low-level features is a fundamental task
in computer vision, and various methods have been proposed
to achieve this goal. Among them, handcrafted methods have
been widely used in many applications. For instance, Laws’
filter is a traditional tool for texture classification that relies
mainly on low-level features. Its main approach is to filter
images with five masks capturing the level, edge, spot, ripple,
and wave [36]. The Gabor filters [37] are another effective
tool for identifying low-level features [39]. In the field of
medical imaging, Gray-Level Co-Occurrence Matrix (GLCM)
[41] is also widely used for low-level feature extraction. It
is a statistical method of examining texture that considers
the spatial relationship of pixels. Despite their effectiveness,
integrating these handcrafted features efficiently into deep
learning models has been a challenge that remains unsolved.

In this work, we aim to decorrelate the shallow layer of
the model to improve the discriminative power of low-level
feature maps. Some works in the field of deep learning have
been proposed. For instance, Deconv loss [20] and Orth loss

[21] are two widely known methods. However, both methods
have certain limitations. Deconv loss has the effect of weight
decay, which is not always desirable. Orth loss enforces
orthogonality in the weight of the convolutional layer, which
is not necessarily equivalent to the desired decorrelation of
representations. To overcome these challenges, we propose the
Decor loss, which achieves better performance in enhancing
low-level feature representation.

I1l. PROPOSED NETWORK

In this section, we present a detailed description of the
proposed ADECOR-Net, including its network architecture,
core components, and loss function. ADECOR-Net is built on
the Res-UNet model, as illustrated in Fig. 2.

The encoder component of the model comprises five Resid-
ual Units, and the decoder section includes four Upsample
Units. The skip connection enables the decoder to receive
spatially detailed information, allowing it to generate fine-
grained segmentation. To better capture the infection, the
channel re-weighting strategy is proposed and adjusts the
number of channels in each layer. Furthermore, we employed
the decorrelation loss at the first three layers to reduce the
correlation among low-level features, thus minimizing feature
redundancy and maximizing diversity of the shallow layers.

A. Residual Unit and Upsample Unit

Our model’s Residual Unit comprises two 3 x 3 convolu-
tional layers. The stride of the first convolutional layer is 2,
reducing the input’s spatial size by 50%. To retain more spatial
information, the fifth Residual Unit’s convolutional stride is set
to 1, maintaining the spatial size unchanged. The Upsample
Unit uses transposed convolution followed by a convolutional
layer to extract informative features.

Note that, we replaced the instance norm in the original
Res-UNet with batch-norm since the instance norm tends to
generate large noise when processing 2D data. In this scenario,
using batch-norm instead of instance norm can improve the
performance of the baseline model.

B. Channels Re-weighting Strategy

In this section, we describe the channel re-weighting strat-
egy used in our ADECOR-Net to address the limitations of
the traditional U-Net and Res-UNet architectures in capturing
low-level features. U-Net and Res-UNet typically have five
layers with the number of channels increasing as the layers
get deeper. However, this design may not be optimal for all
scenarios, especially in the case of COVID-19 infection where
low-level features play a critical role. These low-level features
are essential in identifying COVID-19 infections, as previous
studies have shown [6], [42]. Therefore, we modify the channel
numbers in the early layers of the network to enhance the
model’s ability to recognize low-level features. Specifically,
we increase the number of channels in the initial layers and
gradually decrease them in the deeper layers to keep the model
size unchanged and reduce computational requirements.

In our ADECOR-Net, we set the channel numbers from
(32, 64, 128, 256, 512) to (248, 248, 112, 112, 112) using
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Fig. 2: Overview of the network. The gray numbers around the block are the shape of output feature map.

channel re-weighting. Channel re-weighting will only make
ignorable changes to the model parameters and we can directly
observe the importance of low-level features to the infection
segmentation task. This strategy is verified on both Res-UNet
and U-Net architectures. Despite the channel re-weighting, the
total number of model layers remains the same as we don’t
want to shrink the receptive field of the model.
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Fig. 3: Pipeline of computing decorrelation loss.

C. Decorrelation Loss

The feature map of a neural network consists of multiple
channels, each containing a specific representation of the input.
However, increasing the number of channels in shallow layers
using the channel re-weighting strategy might result in the
redundancy of learned low-level features. To address this issue
and ensure the diversity of the low-level features captured by
shallow layers, we propose a decorrelation loss.

As illustrated in Figure 3, we calculate the channel cor-
relation map S € RY*XC from the original feature map
H € REXHXW ysing the channel interdependency approach
of [19].

H W
sig =2 D (M
h w

s;,; represents the value in the ¢th row and jth column of the
correlation map S, while h?’w represents the value in the hth
row and wth column of the ith channel of the feature map

H. To simplify computations, we can reshape H € R¢*HxW
to H € REXHW o that s;; = H; - H;. We then apply a
softmax function to obtain the probability map X € R¢*C":

eap()
- C Si,

>k exp(=F)
To prevent the model from enlarging the scale of .S’ and reduce
the loss, we incorporate the normalization term z;, which
represents the largest value in the ith row of S. We treat the
maximum value as a constant when computing the gradient.
Afterward, we add the cross-entropy loss to encourage the
channel to relate only to itself. The decorrelation loss for a
specific feature map is computed as follows:

€5

Li,j

C
ldecor = — Z ZOQ(Ii,i) 3)

Unlike [20], the proposed Decor loss does not result in weight
decay, as increasing or decreasing the scale of the weight does
not change X.

Let I’' . denote the Decor loss generated by the feature

decor
map of the mth layer. The total Decor loss is as follows:

M
Ldecor = Z lg;cor (4)

where M contains layers with decorrelation loss added. We
believe that adding Decor loss to all layers is unnecessary, as
semantic information is gradually compressed with the depth
of the layer. Therefore, we also investigate the effect of adding
Decor loss in different layers. In ADECOR-Net, we only apply
the Decor loss to the first three Residual Units, which is
sufficient.

D. Loss Function

Our segmentation model utilizes a combination of binary
cross-entropy loss (Lpcg), dice loss (Lpc) and Decor loss
(Lgecor)- The task involves classifying each pixel as either
infection (positive) or background (negative), and we treat it
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as a pixel-wise binary classification problem. The binary cross-
entropy loss, as defined in Equation (5), is commonly used in
classification and segmentation tasks. It works effectively with
balanced sample distribution and can learn the probability of
each pixel efficiently.

N
Lpcg = — Z(yilog(P(Ii)) + (1 =yi)log(1 — P(x;))) (5)
where ¢ and N indicate the pixel index and the total number
of pixels in an image. y; and P(z;) represent the ground truth
value and predicted probability of the ith pixel respectively.
However, due to the imbalanced sample distribution be-
tween foreground and background pixels, the model requires
the Dice loss, as defined in Equation (6), to give equal
importance to both classes. The Dice Score Coefficient is also
used to evaluate the segmentation performance. The definition
of Dice loss is as follows:
250 yif (@) + ¢
Lpc=1- —7————x (6)
o vl + 220 [ f(@)| + e
where f(x;) presents the predicted result. € is a small constant
that prevents numerical instability. The overall loss function
L is defined as follows:

1 1
L= iLBCE + §LDC + )\Ldecor (7)

where A\ > 0 is the weight of the decorrelation loss.

IV. EXPERIMENTS
A. Dataset Description

Our experimental evaluation of the ADECOR-Net algorithm
includes two datasets, namely the public COVID-19 Challenge
[17] dataset and the COVID-19 CT dataset collected by the
Third People’s Hospital of Shenzhen (COVID-19 TPHSZ).
The COVID-19 TPHSZ dataset consists of 68 CT volumes that
have been meticulously annotated slice by slice. The annotated
regions, which include GGO and consolidations, are labeled
as 1, and the rest of the regions are labeled as 0. The task
of segmenting infections is a two-class segmentation problem,
and the segmentation networks are trained and evaluated using
2D CT slices extracted from 3D volumes of the CT images.
All 2D slices are resized to 512 x 512 x 1. To ensure that
the trained models generalize well, both datasets were divided
into training, validation, and test sets as shown in Table I.
During the dataset splitting process, we ensured that slices
from the same volume were kept in the same set to prevent
information leakage. In Fig. 1, we present some representative
samples from both datasets to showcase their characteristics.

Detail of COVID-19 TPHSZ dataset: This study was ap-
proved by the Ethics Committee of The Third People’s Hospi-
tal of Shenzhen (IRB No. 2022-123). Data were collected from
COVID-19 patients who were admitted to the Third People’s
Hospital of Shenzhen, the only authorized referral hospital for
COVID-19 patients in Shenzhen City, between January 11,
2020, and February 21, 2020. All patients underwent a chest
CT scan in supine posture when holding breath after a deep
breath. The CT scan was taken from the entrance of the chest

cavity to the lower edge of the diaphragm. All CT scans were
acquired from Toshiba Aquilion TSX-101A(Toshiba Medical
Systems) and Ingenuity Flex (Philips Medical Systems) CT
scanners. When labeling, all CT images were independently
reviewed by two radiologists (C. D. and D. D.), and another
senior radiologist (B.B., >30 years’ experience) made the final
decision in cases of disagreement.

B. Implementation Details

Our model was implemented using the MONAI framework
in PyTorch and was trained on high-performance environments
supported by Tesla V100 GPUs. The distribution of training,
validation, and test sets is shown in Table I. The model
parameters were optimized using the training set, and the
validation set was used to select the best model and its
probability threshold. The test set was used to evaluate the
model’s performance. Given a large number of slices without
infections, 80% of the slices without annotations in the training
set were removed to improve training efficiency. We did not
delete any slices from the validation and test sets to ensure
the reliability of our results.

We used stochastic gradient descent (SGD) and Adam
optimizer [44] during training to optimize the model. The
learning rate was initialized to 1 x 10~* and reduced by a
factor of 5 whenever the training loss did not decrease by at
least 5 x 102 within the last 30 epochs. All models were
trained for 300 epochs to ensure convergence. To remove
outliers, the intensity of input images was clipped to the
[0.5, 99.5] percentiles, followed by z-score normalization. We
also applied various augmentation methods, including ran-
dom rotation, scaling, elastic deformations, gamma correction,
mirroring, and intensity shifting. The final value of A was
determined to be 10~2-5 based on the results of the validation
set.

We evaluated our models using four widely adopted metrics:
Precision, Recall, Dice coefficient, and Jaccard Index (JA).
Note that these metrics were evaluated using 3D volumes
reconstructed from 2D slices. These metrics can be computed
given the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) predictions as follow:

Precision = 7TPI;—PFP ®)

Recall = 7TP€-PFN )

Dice = 57p +211;11; +FN (10
TP

TA= TP FP T PN (n

C. Segmentation Results and Discussion

Quantitative Results: Our study presents a comparison of
the proposed segmentation method with other state-of-the-art
models, as presented in Table II. All methods were trained
using the same protocol, except for Inf-Net, which was trained
with its own implementation [12]. We explored the potential
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TABLE |: CT slices distribution of two datasets.

. . Training Validation Test
Dataset Total Volumes  Dimension Volumes Slices Volumes Slices Volumes Slices
COVID-19 Challenge [17] 199 512 x 512 xd 127 3950 32 3172 40 2582
COVID-19 TPHSZ 68 512 x 512 xd 42 7596 11 4231 15 5562

TABLE II: Performance comparison with state-of-the-art methods on two datasets.

Method Param COVID—19 Challepge dataset COVID-19 TPHSZ dataset
' Dice JA  Precision Recall | Dice JA  Precision Recall
UNet [28] 2.637TM [0.6262 0.4860 0.7016 0.6446[0.6076 0.4580 0.6322 0.6173
Inf-Net [12] 33.122 M |0.6129 0.4689 0.6504 0.6508|0.4949 0.3469 0.5342 0.5056
Unet++ [33] 9.045 M [0.5977 0.4580 0.6702 0.6169(0.5778 0.4302 0.6281 0.5846
Unet++ (large) [33] 36.165 M |0.6053 0.4664 0.6672 0.6372|0.5800 0.4354 0.6250 0.6107
Attention U-net [34] 8.725 M |0.5883 0.4500 0.6449 0.6195|0.5772 0.4334 0.5992 0.6312
Attention U-net (large) [34]|34.877 M [0.6296 0.4874 0.6714 0.6706|0.5851 0.4412 0.6118 0.6361
Swin-Unet [30] 41.342 M |0.5998 0.4567 0.6423 0.6502(0.5886 0.4444 0.6408 0.6074
Swin-Unet (pretrained) [30] [41.342 M |0.6356 0.4956 0.6975 0.6650(0.5991 0.4522 0.6299 0.6334
Res-UNet [32] 6.495 M |0.6436 0.5051 0.6815 0.6812|0.6058 0.4565 0.6322 0.6252
Ours 6.457 M |0.6687 0.5297 0.7070 0.6990 |0.6349 0.4855 0.6501 0.6599

of SOTA methods by implementing Unet++ and Attention
U-net models of different sizes. In addition, we used a pre-
trained model to initialize the parameters of Swin-Unet due
to the transformer’s high dependency on pre-trained models,
which was not done for other methods. The proposed method
outperforms other cutting-edge methods by a large margin
in all evaluation metrics on both datasets. We attribute this
improvement to our channel re-weighting strategy and the
proposed Decor loss, which enable our model to effectively
explore low-level features. Moreover, our model parameters
are of medium size, indicating that it can efficiently make use
of model parameters, thereby reducing the risk of overfitting.

Qualitative Results: The lung infection segmentation re-
sults are compared in Fig. 4, where the green line represents
the ground truth, and the red line represents the prediction
of The proposed method. The results in the first, second, and
fourth rows show that our model performs better at the edge
of the infection. Moreover, in the third row, our method can
detect most of the infections, even when they are not very
clear, whereas other methods fail to do so. Overall, Fig. 4
demonstrates that our network achieves superior segmentation
results, particularly for unclear regions. We attribute this
improvement to our method’s stronger ability to capture subtle
texture information.

Effectiveness of channel re-weighting strategy: We con-
ducted a series of experiments to investigate the impact of
the channel re-weighting strategy (CR) on the model’s per-
formance by gradually adjusting the number of channels. To
better demonstrate the effect of channel re-weighting, we did
not apply the Decor loss in this experiment. Fig. 5 shows the
change in the Dice coefficient due to channel re-weighting on
both datasets. The results indicate that increasing the number
of shallow channels significantly improves the model’s Dice
coefficient (approximately 2%) for both Res-UNet and U-Net
with this simple strategy. Notably, different channel settings
have similar parameter sizes, suggesting that the improvement
of the model does not come from the increase in parameters.
However, as the number of low-level features increases and
the number of high-level features decreases, the numerical
growth of Dice tends to reach a saturation point. The Dice

coefficient of U-Net even decreases when the number of
channels in the first layer reaches 240. This finding suggests
that more low-level features do not always lead to better
performance, and some high-level features should be retained.
Although CR significantly improves the model’s performance,
there is no fixed channel setting that is universally applicable
to both models. Therefore, when applying CR to different
backbones, the optimal channel setting should be considered a
hyperparameter. Overall, this figure highlights the importance
of low-level features in infection segmentation.

Effectiveness of the Decor loss: Figure 8 demonstrates the
effectiveness of Decor loss in improving model performance
under different channel settings. Regardless of the channel
setting, the model’s performance is consistently enhanced on
both datasets when Decor loss is added. However, the degree
of improvement varies across different channel settings, with
some settings showing an improvement of approximately 1%
in Dice. Table III compares the effectiveness of different
decorrelation methods. The results indicate that the addition
of any decorrelation method improves model performance.
Nonetheless, our Decor loss still outperforms the other two
methods in terms of Dice and JA on both datasets. Fur-
thermore, we present Figure 7, which illustrates the average
channel dependency across the validation set before and after
the addition of Decor loss. As can be seen from the figure,
the correlation among feature maps is noticeably reduced after
the application of Decor loss, which is consistent with the
observed improvement in model performance. This finding in-
dicates that the Decor loss not only enhances the performance
of the model but also promotes feature diversity by reducing
the correlation among feature maps.

D. Sensitivity Analysis

Fig 8 shows the sensitivity of Decor loss to the weight
and added layers. Results show that the model performs best
when the weight of Decor loss is set to 1072, whereas using
other weights may not guarantee a strong improvement in the
model’s performance. This is because a strong Decor loss can
cause the model to sacrifice fitting accuracy in order to reduce
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Fig. 4: Visual comparison of the segmentation results. The green line represents the ground truth and the red line represents
the prediction made by a specific model.
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Fig. 5: Impact of channel re-weighting on the Dice coefficient of two datasets. The first row shows the results based on Res-
UNet, and the second row shows the results based on the original U-Net. The labels on the y axis denote the channel settings
and the number of parameters. The proposed channel re-weighting strategy leads to improved segmentation performance with
a slight change in the number of model parameters.
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Fig. 6: Effectiveness of Decor loss under different channel settings based on Res-UNet. The labels on the = axis represent the

different channel settings.

TABLE Ill: Model performances using different decorrelation methods, where CR denotes the channel re-weighting strategy.

Decorrelation Method .
Dice

COVID-19 Challenge dataset
JA  Precision Recall

COVID-19 TPHSZ dataset
Dice JA  Precision Recall

Only CR
CR + Deconv loss [20]
CR + Orth loss [21]
CR + Decor loss (ours)

0.6606 0.5216
0.6641 0.5253
0.6639 0.5265
0.6687 0.5297

0.6928
0.7052
0.7092
0.7070

0.6987
0.6945
0.6906
0.6990

0.6271 0.4771 0.6339 0.6636
0.6282 0.4794 0.6524 0.6508
0.6286 0.4811 0.6247 0.6861
0.6349 0.4855 0.6501 0.6599
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(a) COVID-19 Challenge dataset
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(b) COVID-19 TPHSZ dataset

Fig. 7: (a) and (b) show the probability matrix X for two datasets, which illustrates the reduced dependency among different

channels using Decor loss.

feature decorrelation, and a very low weight may render the
Decor loss ineffective. Additionally, we explored the impact
of adding Decor loss to different encoder layers to determine
the optimal configuration. Results show that adding Decor loss
to the first 3 layers is sufficient to achieve improvement, as
Decor loss is designed to obtain diverse low-level features in
shallow layers. Therefore, we only added Decor loss to the
first 3 layers after applying CR, as it was deemed unnecessary
to add Decor loss to deep layers with a relatively small number
of channels.

E. Ablation Study

Table IV presents the results of the ablation study for the
proposed method on both datasets. The ablation study was
conducted under the same training protocol for all models.
The results show that both CR and Decor loss can considerably
improve the model performance. Specifically, CR increases the
Dice coefficient by approximately 2%, and Decor loss results

in a 1% improvement. Moreover, the application of both the
Decor loss and CR strategy can further improve the perfor-
mance on both datasets. This indicates that the improvement
produced by CR and Decor loss is complementary and suitable
for being applied together.

TABLE IV: Ablation study of proposed method on both
datasets.

Dataset |[CR Decor loss| Param. Dice JA  Precision Recall
6.495 M 0.6436 03051 0.6815 0.6812

%2‘3]1'19 v 6.457 M 0.6606 0.5216 0.6928 0.6987
allenge v 6.457 M 0.6540 0.5141 0.6985 0.6856

v v |6457 M 0.6687 0.5297 0.7070 0.6990

6.495 M 0.6058 04565 0.6322 0.6252

Cg;fgg-zw v 6.457 M 0.6271 04771 0.6339 0.6636
v 6457 M 06147 0.4664 0.6348 0.6442

v v |6457 M 0.6349 0.4855 0.6501 0.6599
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Fig. 8: (a) and (b) show the Dice coefficient of the model under different weights of Decor loss. (¢) and (d) show the Dice
coefficient of the model when Decor loss is added to different encoder layers. For instance, Layer 5 on the z axis label

represents adding Decor loss to the first 5 layers of the encoder.

F. Limitations and Future Work

The proposed ADECOR-Net can be further improved by
incorporating semi-supervised learning frameworks and using
powerful pre-trained models. Semi-supervised learning can
enable the model to learn from a large amount of unlabeled
data, and a powerful pre-trained model can further improve
the feature quality and generalization ability of the model.
In addition, we believe that paying more attention to low-
level features can also benefit COVID-19 diagnostic models.
Therefore, in the future, it would be worthwhile to investigate
the performance of the proposed method on the diagnostic task
to improve diagnostic accuracy.

V. CONCLUSION

In this paper, our proposed model, ADECOR-Net, demon-
strates the importance of emphasizing low-level features of
lung images to identify the COVID-19 infection. This is con-
sistent with the way radiologists label the infection. ADECOR-
Net involves the channel re-weighting strategy and Decor loss
to capture subtle low-level features, which we believe are
critical for precise infection segmentation. Our experiments
show that the channel re-weighting strategy can effectively
capture more low-level features, leading to a significant im-
provement in performance without increasing the model size.
Additionally, we propose the Decor loss to ensure feature di-
versity while capturing more low-level features, which further
improves the overall performance of the model. We compare
the proposed ADECOR-Net with other cutting-edge methods
and show that it outperforms them in most metrics. Since
the proposed methods are easy to implement, they have great
potential to be applied in similar scenarios to achieve better
performance.
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