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ARTICLE INFO ABSTRACT

Keywords: Due to the impressive advancements achieved by Denoising Diffusion Probability Models (DDPMs)
Denoising diffusion probabilistic mod- in image generation, researchers have explored the possibility of utilizing DDPMs in discrimina-
els tive tasks to achieve superior performance. However, the inference process of DDPMs is highly
accelerating inefficient since it requires thousands of iterative denoising steps. In this study, we propose an
medical image segmentation accelerated denoising diffusion probabilistic model via truncated inverse processes (ADDPM)
uncertainty that is specifically designed for medical image segmentation. The inverse process of ADDPM

starts from a non-Gaussian distribution and terminates early once a prediction with relatively
low noise is obtained after multiple iterations of denoising. We employ a separate powerful seg-
mentation network to obtain pre-segmentation and construct the non-Gaussian distribution of
the segmentation based on the forward diffusion rule. By further adopting a separate denoising
network, the final segmentation can be obtained with just one denoising step from the predic-
tions with low noise. ADDPM greatly reduces the number of denoising steps to approximately
one-tenth of that in vanilla DDPMs. Our experiments on three segmentation tasks demonstrate
that ADDPM outperforms both vanilla DDPMs and existing representative accelerating DDPMs
methods. Moreover, ADDPM can be easily integrated with existing advanced segmentation
models to improve segmentation performance and provide uncertainty estimation.

1. Introduction

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) have become a
popular research topic in computer vision due to their impressive performance in both unconditional and conditional
generation tasks (Song et al.; Wolleb et al., 2022). DDPMs can be trained on ground truth and use images as priors
during sampling to generate image-specific segmentations, as illustrated in Figure 1 (Wolleb et al., 2022; Guo et al.,
2022b). In medical image segmentation, annotations are often subject to variability among annotators due to differ-
ences in expertise and inherent ambiguity of medical images (Kohl et al., 2018; Guo et al., 2022a). Algorithms that
only provide the most likely hypotheses can lead to misdiagnosis and suboptimal treatment (Begoli et al., 2019), es-
pecially when image segmentation is crucial for the subsequent diagnosis or treatment. To address this issue, medical
images are often annotated by multiple experts to reduce subjective biases(Liao et al., 2022). DDPMs offer a solution
to this problem as their inference process is stochastic and can generate several segmentation masks for the same input
image. This enabes the computation of pixel-wise uncertainty maps and an ensemble of segmentations, which can
improve segmentation performance (Wolleb et al., 2022; Guo et al., 2022b). This feature is particularly beneficial in
clinical settings as it allows for the interpretation of multiple possible semantic segmentation hypotheses, providing
potential diagnoses and suggesting further actions to resolve current ambiguity.
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Denoise T steps

Diffuse T steps

Figure 1: The diffusion and inverse processes of the DDPMs for medical image segmentation. In each step ¢ of the
inverse denoising process, the conditional information is induced by concatenating the medical images I with the noisy
segmentation mask x,.

The diffusion process and the inverse process of DDPMs correspond to two distinct Markov chains. The diffusion
process involves gradually introducing Gaussian noise to data samples until the data distribution becomes Gaussian,
while the generative process is the inverse of the diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020).
DDPMs generate samples by iteratively removing noise from Gaussian noise samples using a trained deep neural
network for denoising. In medical image segmentation, the generative objective of DDPMs is to predict segmentations
(Wolleb et al., 2022; Guo et al., 2022b). However, a significant challenge with DDPMs is the inefficiency of inference.
Obtaining segmentations from DDPMs typically requires thousands of denoising steps, and each step of which involves
a forward prediction of the denoising neural network.

Several approaches have been proposed to accelerate the inverse process of DDPMs, including using non-Markovian
inverse process (Begoli et al., 2019), introducing knowledge distillation (Salimans and Ho), diffusing in a lower-
dimensional latent space (Rombach et al., 2022), and using adaptive noise scheduling (Kingma et al., 2021). How-
ever, these methods have limitations and cannot significantly accelerate sampling without compromising the quality
of generation. Other methods (Zheng et al., 2022; Lyu et al., 2022) improve sampling efficiency by truncating the
diffusion processes, boosting the performance at the same time. However, these methods require the combination
of GAN(Goodfellow et al., 2020) or VAE(Kingma and Welling, 2014) models, which are difficult to train, and their
performance is limited by the quality of the generated images from the pre-trained generative model. In summary,
none of the above methods are specifically designed to accelerate sampling for segmentation tasks. Our preliminary
work, PD-DDPM, was accepted in the 20th IEEE International Symposium on Biomedical Imaging (ISBI12023) confer-
ence paper (Guo et al., 2022b), and it is the first accelerated DDPMs model developed specifically for medical image
segmentation. The key idea behind PD-DDPM is to obtain pre-segmentation results using a separate segmentation
network and construct noise predictions based on the forward diffusion rule. By starting from these noisy predictions,
clean segmentation results can be generated with fewer inverse denoising steps. PD-DDPM only considers truncating
some of the initial iterative steps in the inverse process. ADDPM is an extension of PD-DDPM proposed in this paper
that truncate both the initial and final stages of the inverse process. The number of denoising steps in ADDPM is
approximately one-third of that in PD-DDPM.

In this paper, we propose an accelerating denoising diffusion probabilistic model via truncated inverse processes
(ADDPM) that is specifically designed for medical image segmentation. The core idea behind ADDPM is to truncate
both the initial and final stages of the inverse process, resulting in a more efficient inference process that only considers
a smaller number of steps in the middle. To achieve this, we first obtain pre-segmentation results using a separate seg-
mentation network and then generate noise predictions (non-Gaussian distribution) based on the forward diffusion rule.
Next, starting from these noisy predictions, we can use fewer inverse denoising steps to generate clean segmentation
results. Further, we terminate the inverse processes early when a low noisy segmentation result is obtained, and then
apply a separate denoising network to denoise the low noisy segmentation and obtain the final segmentation result. Our
experiments demonstrate that ADDPM significantly reduces the number of denoising steps required (from 1000 steps
to 100 steps in the best case of our experiments), without sacrificing segmentation performance. When integrated with
a strong pre-segmentation model, ADDPM outperforms both vanilla DDPMs and the pre-segmentation model alone.
Moreover, ADDPM can be easily integrated with existing advanced segmentation models to improve segmentation
performance and provide uncertainty estimation. We evaluate ADDPM across different datasets and demonstrate that
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Figure 2: Overview of ADDPM for medical image segmentation. (a) The image I is input into the segmentation network
f, to obtain the pre-segmentation result x; ,,. (b) Based on equation (10), the noise segmentation prediction x; for
step 7’ can be obtained by performing a single diffusion operation on x; . (c) Starting from x, 1/, iterative denoising
is performed to obtain the noise prediction x;,». (d) The denoising network f,, is used to denoise the noise prediction
x;pn to obtain the final segmentation result y. (e) In each step of the inverse denoising process, x,, is obtained based on
x;,_, according to equation (8). During inference, ADDPM samples the same test sample n times to generate n different
segmentation masks. The ensemble segmentation and uncertainty map are generated based on the n different predictions.

it achieves optimal performance compared to existing representative methods. Since both the pre-segmentation and
denoising networks can be easily implemented in a single step, this imposes only a small computational overhead on
ADDPM.

In summary, we have made the following three contributions:

1. We propose ADDPM, an accelerated denoising diffusion probabilistic model via truncated inverse processes,
specifically designed for medical image segmentation. ADDPM significantly reduces the number of denoising
steps required for generate segmentation results while improving segmentation performance.

2. ADDPM retains the key properties of vanilla DDPMs, such as uncertainty estimation and ensemble, and can
be easily integrated with existing advanced segmentation models to further enhance segmentation performance
and provide uncertainty estimation capabilities.

3. Our experiments on three different datasets demonstrate that ADDPM achieves optimal performance compared
to existing representative methods.

This paper is organized as follows. Section 2 describes the related work. Section 3 presents in detail each compo-
nent of our method. Section 4 introduces the experimental setup and experimental data in detail. Section 5 evaluates
the proposed methods and reports results. Sections 6 conclude the work of this paper.

2. Related Work

2.1. Medical Image Segmentation

CNN for Segmentation: In recent years, convolutional neural networks have made great development in medical
image segmentation (Ronneberger et al., 2015; Song et al., 2022; Zhou et al., 2019). With superior performance
and elegant structure, U-Net has become a common basic model in medical image segmentation (Ronneberger et al.,
2015). And many later works also extended this architecture to achieve more accurate segmentation, such as ResUNet
(Xiao et al., 2018), DenseUNet (Cao et al., 2020), AttUNet (Oktay et al.) and UNet++ (Zhou et al., 2019). Inspired
by residual connections and dense connections in computer vision tasks, ResUNet (Xiao et al., 2018) and DenseUNet
(Cao et al., 2020) replace the encoder backbone of UNet with residual connections and dense connections, respectively.
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Some other technologies such as attention mechanism (Vaswani et al., 2017), atrous convolution (Chen et al., 2017),
pyramid structure (Zhao et al., 2017), etc. have also been successfully introduced to improve the performance of the
UNet. U-Net++ (Zhou et al., 2019) proposed nested and dense skip connections which can reduce the semantic gap
between the encoder and the decoder.

Transformer for Segmentation: Inspired by the great success of Transformer in NLP (Vaswani et al., 2017),
more and more Transformer-based methods appear in CV task (Dalmaz et al., 2022; He et al., 2021). Dosovitskiy
et al. (Dosovitskiy et al.) introduced transformers to vision tasks for the first time, demonstrating state-of-the-art
performance on image classification tasks. Recently researchers have also introduced transformers for medical image
segmentation. TransUNet (Chen et al., 2021) introduces transformers into encoders to capture global dependencies,
and is the first to study using Transformers to solve medical image segmentation problems. UNETR (Hatamizadeh
et al., 2022) utilizes pure Transformers as encoders to efficiently capture global multi-scale information. Swin-Unet
(Cao et al., 2023) uses a layered Swin transformer with a shift window as an encoder to extract contextual features.

2.2. Denoising Diffusion Probabilistic Model

DDPMs are a class of generative models that has received increasing attention due to their remarkable achievements
in unconditional and conditional generative tasks (Sohl-Dickstein et al., 2015; Ho et al., 2020). To date, it has been
widely used in a variety of applications, ranging from generative tasks such as image generation (Esser et al., 2021),
image super-resolution (Li et al., 2022), and image inpainting (Liu et al., 2022) to discriminative tasks such as image
segmentation (Wolleb et al., 2022; Guo et al., 2022b), anomaly detection (Wolleb et al., 2022). Recently, DDPM-based
researchs has also emerged in the medical image segmentation. Based on the DDPMs, medical image segmentation
can be described as a conditional image generation task, which allows to compute pixel-wise uncertainty maps of the
segmentation and allows an ensemble of segmentations to boost the segmentation performance (Wolleb et al., 2022;
Guo et al., 2022b). Wolleb et al. (Wolleb et al., 2022) proposed a weakly supervised learning method based on DDIM
for medical anomaly detection. Hu et al. (Hu et al., 2022) utilizes DDPM to denoise optical coherence tomography
(OCT) retinal data in an unsupervised manner.

2.3. Accelerating DDPMs

Recently there has been some works focused on speeding up the sampling process for DDPMs. Song et al. (Song
et al.) attempted to reduce the number of diffusion steps by using non-Markovian inverse processes. Watson et al.
(Watson et al., 2022) propose a dynamic programming algorithm that finds the optimal denoising time-step schedule
for DDPMs. San-Roman et al. (San-Roman et al., 2021) present a adaptive noise scheduling to estimate the noise
parameters given the current input at inference time, which requiring less steps. Salimans & Ho (Salimans and Ho)
propose to progressively distill a trained DDPM for fast sampling. Some methods (Vahdat et al., 2021; Rombach et al.,
2022) shifted the diffusion process to the latent space using pre-trained autoencoders. However, the above methods
cannot achieve significant acceleration without sacrificing the quality of generation. Some other methods (Zheng
et al., 2022; Lyu et al., 2022) improve sampling efficiency by truncating the forward diffusion processes, boosting the
performance at the same time. But those methods need to combine GAN (Goodfellow et al., 2020) or VAE (Kingma
and Welling, 2014) models that are difficult to train. And all of the above methods do not implement accelerated
sampling specifically for segmentation tasks. PD-DDPM (Guo et al., 2022b) is our previously proposed accelerated
DDPM model specifically for medical image segmentation, which only considers truncating some of the initial iterative
steps in the inverse process.

3. Method

Figure 2 illustrates the overview of our proposed ADDPM. Firstly, a separate segmentation network f, is trained
to obtain the pre-segmentation x,,, from the image I. According to the forward diffusion rule, the pre-segmentation
result x,,, is diffused to the 7”-th step to obtain xv. Then, based on x+ and following the rules of the inverse
diffusion process, we iteratively denoise for T/ — T" steps to obtain the segmentation prediction x,» at step T".
Finally, a separate denoising network f,, is used to obtain the clean segmentation prediction y from x7» in one step.
The number of iteration steps of the entire inverse denoising process is reduced from T steps of vanilla DDPMs to

T’ —T" steps of ADDPM.
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3.1. Preliminaries on DDPMs

In DDPMs, the forward diffusion process is a first-order Markov chain that perturbs the data distribution g(x) by
gradually adding Gaussian noise with variance g, € (0, 1) at time ¢, until the data distribution converges to a standard
Gaussian distribution. The form of the forward process can be summarized as follows:

T
Q(xl:Tlx()) = H (J(xtlx;_l),
=1 ()

Q(lexz_l) = N(xt; V 1- ﬂtxt—hﬂzl)'

where x|.r denotes the set of variables x|, x,, ..., xy. The value of T typically ranges from 1000 to 4000 in most
works. By sequentially applying g(x,|x,_;) for ¢ steps, we can write:

aCx 1x0) = N (xs y/axg. (1 = @)D @

witha, =1—p, and @, = H’S=l a,. Using the reparameterization trick, we can express x, directly as a function of x:

X; = \/gtxo +1/1—qe, 3)

with e € M(0,I). Since the diffusion rate is small (i.e., B; 1s kept sufficiently small), the inverse process distribution
Po(x,_11x,) also follows a Gaussian distribution. Therefore, we can use a neural network fj to parameterize the Gaus-
sian distribution p, to approximate the inverse process. Starting from p(x7) = N (x7; 0, I), the inverse process can be
expressed as follows:

T

Po(Xo: r—1lx7) = Hpg(xt_llx,), @
=1

Po(xi_11x0) = N (13 pgCxps 1), Zp (. ).

To generate an image from the inverse process, we first sample x from the underlying data distribution by drawing a
latent variable (of the same size as the training data point x;) from p(x7), which is chosen to be an isotropic Gaussian
distribution. Then, we iteratively draw sample x,_; from py(x,_;|x,) fort =T,T —1, ..., 1 until we obtain a new data
point x,. The generation process of DDPMs is computationally expensive since it requires iterative sampling from
the transition distribution py(x;_;|x,), which involves many evaluations of the output of f,. In (Ho et al., 2020), it
was shown that during inference, starting from Gaussian noise x,, x,_; can be obtained by iteratively denoising x, as
follows:

Xo) = () — £y (1) + 2, 5)

AR

with z ~ N(0,I). Following the standard process of DDPMs (Ho et al., 2020), the training objective can be further
simplified as:

Lsimple = Et,xo,g[” &€= fG(\/EIXO + \/ 1 _at'g’ )] ”2] (6)

3.2. DDPMs for Medical Image Segmentation

Figure 1 depicts the modification of DDPMs for medical image segmentation. Let I be the input medical image,
and x; be its corresponding ground truth segmentation with the same dimensions as I. We incorporate the anatomical
information of I by appending it as an image prior to x;, resulting in X = I @ x;. During the forward diffusion
process g, we only add noise to the ground truth segmentation x; as follows:

x,’,=\/&jx,+\/1—5,e, @)

and we define X, = I & x,,. Equation 5 is then modified to:

Xpm1 = = — ——=/fo(X;, 1) + a,z. )

A
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3.3. Truncating The Initial Stages of The Inverse Process

One natural question raised from the vanilla DDPMs could be: can we truncate the inverse process to T' (< T)
steps? If we can obtain the noise segmentation prediction x; 7 in advance, then it can be achieved. As illustrated in
Figure 1, to generate an image-specific segmentation, we train the DDPMs on the ground truth segmentation and use
the image as a prior during training and in each step of the sampling process (Wolleb et al., 2022; Guo et al., 2022b).
Additionally, we can use image priors to train a separate segmentation network f, to obtain pre-segmentation results
X1 pre> a8 shown in Figure 2.

x[,pre = f(Ia d)) (9)

In the sampling process, we first obtain the pre-segmentation result x; ., through the pre-segmentation network f .
Then, according to equation (7), the pre-segmentation result is diffused to T’ step to obtain the noise segmentation
prediction x 7.

‘xI,T/ = \;ET/xl,pre + \/ 1 —ETlg. (10)

By following the rules of the inverse diffusion process, the sampling process can begin iterative denoising based on
Xy 7+ In this way, the inverse process can be newly defined as:

T/
Pe(x1,0:<T’—1) |xI,T’) = HPe(XI,z—l |xI,t)’ (11)
=1

Po(xp11x1 ) = N (X ps p(Xp 4o 1), Zg(xp 1 1))

This is also equivalent to truncating the diffusion process in the middle at t = T’ < T. So we can use the DDPMs
to denoise the non Gaussian distribution x; 7+ to a clean segmentation x, in fewer steps than the vanilla sampling
process according to equation (11). In this way, the number of T step iterations of the vanilla DDPMs is reduced by
T — T’ steps. Existing advanced segmentation models can all be used as pre-segmentation networks, so this design
has good scalability. At the same time, since the pre-segmentation can be completed in one step, it brings only minor
computational overhead to ADDPM. Through subsequent experiments, we empirically found that truncating the initial
stages of the inverse process can enhance the model’s segmentation performance compared to vanilla DDPMs.

3.4. Truncating The Final Stages of The Inverse Process

Based on equation (11), the inverse process starts from step T’ to iteratively denoise. With a similar idea, we
can further stop the inverse process early, thereby reducing the number of inference iterations even more. As shown
in Figure 2, the prediction results in the final stages of the inverse process demonstrate minimal noise. While the
segmentation prediction in the final stages of the inverse process may exhibit some noise, it tends to align with the
final segmentation prediction result and does not introduce excessive prediction randomness. Therefore, we can early
stop the inverse process based on truncating the initial stages of the inverse process. The step at which the inverse
process stops early is represented by T"/(T"" < T"). Based on x; 7, we can denoise it in one step through a separate
denoising network f,, to obtain the final segmentation result y. In detail, the inverse diffusion process from step x; 7~
to step xy r» can be described as follows:

T/

pé)(xl,(Tu—l):(T’—l)|xI,T’)= H pe(xl,t—llxl,t)’
=7" -1

Po(Xp—11x1 ) = N (X115 (x40 1) Zg(xX 40 1)).

12)

Based on equation (12), we can iteratively denoise to obtain the noise segmentation prediction x; 7~ from x; 7. Then,
we concatenate the noise prediction x; 7~ and the image I as input to the denoising network f,,. The output of f,, is
the clean segmentation result y.

y=f(I,XI,TH§l//) (13)

In this paper, we choose the UNet as the denoising network f,,. There are several different ways to get the final
segmentation result y from x; r». For example, we can use the denoising network f,, to directly denoise x; 7 to
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Algorithm 1 Sampling Procedure

Input: 7, the original image
Output: y, the segmentation
L X7 pre = fp(I)
Xpqr = X e + 1T —Upre
fort < T’ toT" do

X, =1 xy,

X[p—1 = ﬁ(xl,t - \}I__L;;tfa(xpf)) + o,z
end for
Xpn =1 @ Xy
y= fW(XT”)
return y

0L 23R

obtain the segmentation result y. In the following experiments, we will compare these methods in detail. Since the
denoising can be completed in one step, the computational overhead brought to ADDPM is very small. In the above
way, the number of denoising steps required for the sampling process is greatly reduced.

3.5. Training And Testing

Based on the above description, ADDPM requires training three networks. The training objectives of the three
networks are detailed as follows:

Training f,: For f,, the inputis the image 1, and the output is the pre-segmentation result x .. Correspondingly,
we use the standard cross-entropy loss function for optimization.

L(P. f(I:¢) = = Y’ Plogfi(1: $). (14)

where f;(I;¢) can be seen as the likelihood function of the real category i, and P is the ground truth probability
distribution.

Training f,,: For f,,, the input is the noise prediction x; 7 concatenated with the image /, and the output of the
denoising network f,, is the final clean segmentation result y. During training, x; 7 is obtained by equation (7) based
on xj.

Xpn = VET//xI + \/ 1 —&T//G, (15)

Where x; is the ground truth segmentation annotation and y is the predicted segmentation result from f,. The cross-
entropy loss function is used for optimization.

L(P, f(xppn, Iyw)) = — Z Pilogfi(xyrn, L;w), (16)

where f;(I;y) can be seen as the likelihood function of the real category i, and P is the ground truth probability
distribution.

Training f,: The parameters for f, are obtained by minimizing the KL-divergence between the forward and inverse
distributions for all timesteps. This can be further simplified by using a posterior distribution q(x; ,|x; ,_;; x; o) (Sohl-
Dickstein et al., 2015). And the posterior distribution can be derived using equation (1) and (3) under the Markovian
assumption,

a1 |xp 0 x10) = N(xp 10 p, 07D, (17)

Va_ (- l-a,_ —a, - . T
a’?; a’)xo + \/F'i ;’ v = W During optimization, we assume that both
_ —a, _

t
distributions q(xy ,_q1xy;, Xy o) and py(x; ;_1|x; ;) are the same. The combination of p and q can be seen as a variational
autoencoder (Kingma and Welling, 2014), and the variational lower bound (VLB) can be expressed as follows:

where, pu(x;, xy) = x, and o2

Lypy=Lyr+ Ly +..4+ Ly + Ly (18)
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L,y = Dgp(q(xp—ilxp s x10) | PoCxpi—i1%14)) (19)

However, the training objective can be further simplified as equation (6) (Ho et al., 2020). In addition, Log-likelihood
is a widely used metric in generative modeling, and it is generally believed that optimizing log-likelihood forces gen-
erative models to capture all of the modes of the data distribution (Nichol and Dhariwal, 2021). Hence, we obtain the
hybrid loss (Nichol and Dhariwal, 2021) by combining equation (6) and (18):

Lhybrid = Lsimple + A'Lvlb (20)
Where A is a regularization parameter. For all experiments in this paper, A = 0.001 is set to regularize L.

Testing: During inference, we follow the procedure presented in Algorithm 1, which is a stochastic process. There-
fore, sampling twice for the same image I does not result in the same segmentation mask prediction y. Exploiting this
property, we can implicitly generate an ensemble of segmentation masks without having to train a new model. This
ensemble can be used to improve the segmentation performance.

4. EXPERIMENTS

4.1. Datasets

WMH: The dataset was provided by the WMH segmentation challenge in MICCAI 2017(Kuijf et al., 2019). It
consists of 60 cases of brain MRI images, including 3D T1-weighted images and 2D multi-slice FLAIR images, along
with manual annotations of white matter hyperintensity in binary masks.

Hip: The dataset is provided by the MRI Hippocampus Segmentation challenge in Kaggle (Malekzadeh, 2019). It
contains MRI segmentation of Hippocampus gland (binary masks), which consists of 135 cases MRI images.

Brats13: The dataset is provided by BraTS2013 (Menze et al., 2014), which includeing 20 High-grade and 10
Low-grade with Flair, T1, Tlc, and T2 scans of MRI. The ground truth have four different labels: 1-necrosis, 2-edema,
3-non-enhancing tumor, and 4-enhancing tumor. Following the BraTS2013, three different categories such as complete
tumor (1-necrosis, 2-edema, 3-non-enhancing tumor, 4-enhance tumor), tumor core (3-non-enhance tumor, 4-enhance
tumor) and enhanced tumor (4-enhacne tumor) are considered for the evaluation.

4.2. Implementation Details

Our experiments were implemented using Pytorch and performed on NVIDIA TESLA V-100 (Pascal) GPUs with
32 GB memory. We used the Adam optimizer with a weight decay of 1e-5 to optimize all configurations. For WMH,
we set the batch size to 12 and patch size to 128 x 192. For Hip, we set the batch size to 8 and patch size to 224 X
192. For Brats13, we set the batch size to 12 and patch size to 160 X 160. During testing, the segmentation probability
maps were predicted by the sliding windows technique with 50% overlaps. The denoising network used in DDPMs
had a architecture similar to the UNet used in (Nichol and Dhariwal, 2021), and its attention layer used a multi-head
attention (Vaswani et al., 2017). We employed a cosine noise schedule for T = 1000 steps for DDPMs. All cases for
each task were randomly assigned to a training set (3-fold), a validation set (1-fold), and a test set (1-fold). And we
chose the best-performing model on the validation set for testing.

S. RESULTS

5.1. Comparison of Segmentation Performance

The inference process of ADDPM is a stochastic process, meaning that multiple samples of the same image may
yield different segmentation mask predictions. In this paper, we sample 5 different segmentation masks for each image
in the test set. Then, we average the predicted probability maps (the softmax output of f,) corresponding to the five
different segmentation masks to obtain the fused predicted probability map. Finally, we transform the fused prediction
probability map into segmentation results. Table 1 presents the Dice score, HD score, Jaccard index, and Precision.

In Table 1, we present the results of quantitative experiments that compare our method with a range of represen-
tative methods. The UNet (Ronneberger et al., 2015), AttUnet (Oktay et al.), and UNet++ (Zhou et al., 2019) are
the most representative convolutional structured deep learning models for medical image segmentation. The UNETR
(Hatamizadeh et al., 2022) and SwinUNet (Cao et al., 2023) are the most representative deep learning models for
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Table 1
Comparison of segmentation results of existing advanced models and our proposed method. The performance is measured
by Dice, HD, Jaccard, and, Precision.

Dice 1 : (mean+std)(%) Jaccard 1 : (meanzstd)(%)

WMH Hip Brats13 WMH Hip Brats13
Methods WT TC ET WT TC ET
UNet 78.71,0515 82.47,1190 83.02434 06.04,159) 59.69,3077 65.65.),3 71.56,1370 72.79,;603 52.05.1961 48.26,5,
AttUNet 79.97,0776 82.96.1195 82.18, 503 66.09,1547 59.12,3953 67.34,),0; 72.31,139¢ 71.93,7;5 52.09.5000 47.35.2603
UNet++ 79870784 82731506 83.19,57) 62.24,195 54.44,388 67.19,1093 71.98,,40; 73.63,515 48.00,50, 33.07.50
UNETR 78.10,0g;; 81.24,1507 77.20,5;3 61.67.5s9 52.95,30, 64.82,),3 69.82,)39; 66.70,0y44 48.33,.5370 41.57,273;
SwinUNet 77.03,0953 80.95,1516 76.82,597 57.70,94590 51.36,3043 63.62,15465 69.41,139, 66.38,595 44.69,,,60 40.25,50;
Bayesian UNet 79.81,579; 82.58.155; 80.53, 695 63.26,5,,5 57.48,3094 67.16,0657 71.80,4;5 70.18,,973 49.61,5 75 46.31,574;
Probabilistic UNet 79.22, 5500 82.22,155 81.50,935 62.10.5 74 56.63,3035 66.32,), 14 71.27.35 72.07,5033 48.82,5375 45.26,759
DDPM 79.62,0535 82.08,150p 81.91y504) 04.47,03099 57.64,3,17 6696, 79 71.01,137; 73.024555 51.65.54 )7 46.74,5,,
TDPM 80.13, 0503 82.8741p19 82.28,1947 06.38,9045 58.49,3055 67.62,11 49 72.19.1305 73.22,9935 52.98,57 47.34,953
ES-DDPM 80.31,5766 82.90,1534 82.40,,90y 64.92,065 59.32,3065 67.80,1094 72.30,,455 73.29.5014 52.02,535, 48.30,555,
PD-DDPM 81.22, 1709 83.60, 1555 84.17 1405 67.60,5005 61.66,500, 69.02, 1051 73.32, 1,30 74.89,1707 54.34,5177 50.77,5500
ADDPM;,,,4 80.51,0764 82.83,1509 82.3041953 05.23,35 58.49.3, 68.08,1095 72.13,)393 73.48,5073 52.42,5401 47.54.37
ADDPM, 5, 81.45.,,; 83.65,15,5 84.25,,,6 68.00,,97 61.65.3; 69.34,,044 73.40,,43, 74.93,703 54.71 5,54 50.83.57

HD | : (meanzstd) Precision 1 : (meanzstd)(%)

WMH Hip Brats13 WMH Hip Brats13
Methods WT TC ET WT TC ET
UNet 3.935,0313 1.819,0885 37.85.3041 34.28,9561 49.51.774 82.27.4597 82151557 90.21,075) 74.23,533 73.34,3349
AttUNet 4.190,056 16480593 44.92,975 27.33,5394 48.74.750 80.90,0957 83.70,1565 91.88.0600 79-5012026 73-4313363
UNet++ 3.915,0304 3.949,130) 36.01,p555 24.76, 555 48.56,7,55 83.02,0917 83.93,)580 91.50,0565 73.84,25 74.80,345
UNETR 3.619,0546 6.191,1454 52.00,305; 40.61.30,5 58.41.7,97 82800560 81.45,1199 86.39, 095 80.65.155 74.28,37
SwinUNet 5.789,0476 8.602,,670 58.92,0944 44.33,359 58.47.7,55 83.13,045 81.68,304 87.65,,010 82.30,,956 76.95,330
Bayesian UNet 3.828,0,00 2.316,575 32.30,050) 19.90,,700 4138,7047 79775105 88761305 926405, B3.52, 055 75.82,14
Probabilistic UNet  3.777,0y10 1.792,,007 36.28,5148 25515415 45.28,705 82.40,005 84.04, 313 90.47,05 76.22.706s 75.6755011
DDPM 4179067 16710505 29.68,9775 18.18, 1357 44.37.709 82.04,095 83.76, 055 92.47.0500 82.46,1577 76.63,34 03
TDOPM 3.608, 0535 1.687,0g65 30.07,3097 16.25,1399 40.73.7,7p 82.53,0916 84.18,)585 92.50,0499 81.96,245 76.58,343
ES-DDPM 352400 1.665,00s 31.38,5 15.44,17 39741700 82.77u000; 84.70.1515 92.02,0007 79.18,04 17 76.31m4 10
PD-DDPM 3.432, 00 1.609.001 32753108 22.50.m5 443707160 83.77.050r 846701000 9173067 76.442505 75.36.1509
ADDPM,;,,, 3.801,0085 1.649:0805 29.27.3108 15.63,)585 38.28,7p47 82.22,09)) 84711304 93.87. 0512 798710371 T7.79.345
ADDPM, ;e 3.453, 0068 1.589,0030 30.47.3,49 15.33,1633 38.16,73,, 83.93,(555 84.65.1303 93.44.0477 79.62,p307 77.20,3450

medical image segmentation based on the transformer structure. However, none of the above models can estimate the
uncertainty of segmentation results. Bayesian U-Net (Gal and Ghahramani, 2016) and Probabilistic U-Net (Baum-
gartner et al., 2019) are two representative methods that can estimate the uncertainty of the segmentation prediction.
Furthermore, we also compare ADDPM with other existing accelerated DDPM models, including TDPM (Zheng et al.,
2022), ES-DDPM (Lyu et al., 2022), and PD-DDPM (Guo et al., 2022b). It should be emphasized that the ensemble
size in the comparison methods is also set to 5. According to the results in Table 1, for WMH, Hip, and Brats13 seg-
mentation tasks, the pre-segmentation models of ADDPM are selected as AttUNet, AttUNet, and UNet, respectively,
as these models achieved the best performance in these three different segmentation tasks compared with other models.

Table 1 demonstrates that ADDPM (T’ = 300, T = 200) achieves the best overall performance compared
to other methods. Although ADDPM has less improvement in segmentation performance compared to PD-DDPM,
ADDPM further reduces the number of iterations required for sampling. Additionally, we found that the truncation-
based accelerated DDPMs models (TDPM, ES-DDPM, PD-DDPM, and ADDPM) outperformed the vanilla DDPMs.
Moreover, we compared the effect of linear and cosine noise strategies on the model and found that ADDPM performed
better under the cosine strategy. Figure 3 illustrates some cases on three segmentation datasets segmented by five
individual base masks and their ensemble and uncertainty maps. We observed that five different base segmentation
masks generated significantly different results, and the ensemble avoids the worst segmentation result. Additionally,
we can clearly identify the areas where the model was uncertain through the uncertainty map.

5.2. Determining Optimal 7’ and 7"

In this analysis, we investigated the impact of the hyperparameter T/ on ADDPM. For the WMH segmentation
task, we only truncated the initial stages of the inverse process by varying T’ among the values of {50, 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000}. The results, presented in Figure 4, show that the model achieved the best Dice
score when T’ = 300. Furthermore, we observed that truncating the initial stages of the inverse process significantly
improves the segmentation performance compared to vanilla DDPMs. We attribute this to the fact that when ¢ > 300,
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Figure 3: Detailed segmentation results of five base masks, the ensemble mask and uncertainty maps. (a) Image; (b)
Ground truth; (c) Uncertainty maps; (d) Base mask 1; (e) Base mask 2; (f) Base mask 3; (g) Base mask 4; (h) Base mask
5; (i) Ensemble mask. The red areas indicate the overlap between the foreground in the predicted segmentation result and
the foreground in the Ground truth. The blue ones are the prediction errors. For better visualization, the regions inside
the smaller yellow bounding box are zoomed into the larger bounding box.
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Figure 4: The Dice on testing set with respect to T’ (only truncating the initial stages of the inverse process, T" = 0).

the corresponding diffusion rate is relatively high, and the Gaussian assumption may not hold well, which can make it
challenging for the model to effectively capture the true distribution of the data (Sohl-Dickstein et al., 2015).

Then, we analyzed the impact of the hyperparameter T”' on ADDPM under the condition of truncating the initial
stages of the inverse process (T’ = 300). By varying T'"" among {50, 100, 150, 200, 250, 260, 270, 280, 290, 295},
we trained ADDPM on the WMH segmentation task, which simultaneously truncates the initial and final stages of the

Xutao Guo et al.: Preprint submitted to Elsevier Page 10 of 15



Short Title of the Article

0.814 4

0.812 1

0.810 1

ce

2 0.808 1
0.806

0.804

50 100 150 200 250 300
-
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le-3
/’* ? F1.8

0.812 A
1.6

0.810 1 14

[
123
£ 0.808 3
1.0
0.806 1 —e— Dice average
AN —&- Dice std 0.8
N
A
0.804 - oL Ao A |06
\‘z’
1 2 3 4 5 6 7

Ensemble size

Figure 6: The average and standard deviation of the dice on testing set with respect to ensemble size (T’=300, T""=200).

inverse process. As shown in Figure 5, ADDPM achieves the best Dice score when T"' = 200. Compared to truncating
the initial of the inverse process, truncating the final of the inverse process has a small improvement in segmentation
accuracy but further reduces the number of iterations required for inference.

In conclusion, based on the above analysis, we determined that the optimal truncation positions for the initial
and final stages of the inverse process in ADDPM are 300 and 200 respectively. Since the experimental analysis
mentioned above is time-consuming, we directly used the optimal T’ and T’ settings obtained from the WMH analysis
for the Brats13 and Hip segmentation tasks. Table 1 shows that this setting can effectively improve the segmentation
performance of the model on the three segmentation tasks.

5.3. Effect of the size of ensembles

Ensemble learning aims at aggregating different base predicitons to boost the model performance. The optimal
size of an ensemble, i.e., how many base predicitons in the ensemble are needed, remains an open issue and, as in
many related ensemble learning tasks, a task specific parameter that needs to be optimized (Beluch et al., 2018). So
we test on WMH with different ensemble sizes and the training process is repeated 3 times.

Figure 6 shows that (1) the ensemble with multiple masks outperformed the only one mask. (2) when ensemble
sizes increased, performance tended to saturate. We set the ensemble size to 5 in ADDPM. Figure 6 also shows standard
deviation of the Dice score with respect to different ensemble sizes. As the ensemble size increases, the variation of
segmentation performance was reduced on the Dice score. The above results show the ensemble of segmentation
masks of ADDPM not only boost the segmentation performance, but also ensures a robust segmentation result.

5.4. Effect of pre-segmentation model performance

Here, we analyze the impact of pre-segmentation model performance on ADDPM through the WMH segmenta-
tion task. We take different segmentation models in Table | as pre-segmentation models, including UNet, AttUnet,
UNet++, UNETR, and SwinUNet, which correspond to different pre-segmentation performances. Table 2 lists four
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Table 2
The segmentation performance of ADDPM (7'=300, T"”=200) based on different pre-segmentation networks. And the
performance of different pre-segmentation models.

Methods Dice Jaccard HD Precision
UNet 78710513  65.65,y15 3.935.3,3 82.27.4
ADDPM 80.70,754 683137, 3.396,,,, 85.14.45)9
AttUNet 79.97.0776 67.34,,0 4190555 80.90, 4957
ADDPM 81.06,76; 68.86,085 3.730,,535  84.00 504
UNet++4 | 79.87,075¢ 6719993 3.915,5040 83.02,09 5
ADDPM 80.70,75p 68.31,,570 3.608,,35 84.54 53
UNETR 78.10,05, 64.82,,;3 3.619,,450 82.800540
ADDPM 80.10,75) 67.47,056 3.477.,,15 85.86 0653
SwinUNet | 77.03,p953 63.62,;, 14 5790476 83.13.03351
ADDPM | 79.99,475  67.33,1063 34825055  85.82,0660

Table 3
The segmentation performance of ADDPM (T'=300, 7"=200) based on AttUNet with different segmentation performance.
And the performance of AttUNet with different segmentation performance.

Pre-segmentation Dice Jaccard HD Precision
Pre-seg (Dice=59.57) | 59.57, 1907 45.05,105 14.47 555 66.90 5,5
ADDPM 75.86,1053 62.28,1374 06.88,0572 84.64. 0600
Pre-seg (Dice=67.53) | 67.54,,69; 53.33,155 08-72,0607 70741190
ADDPM 76.82,0070 63391301 06.61.056; 85.55,0547
Pre-seg (Dice=71.82) | 71.83,,16; 57-34,1445 08.26,053; 82.56,095,
ADDPM 78.22,0504 64961106 05.51.0366 87-79.06.11
Pre-seg (Dice=74.13) | 74.14,,5,, 60.34,,5; 06.67,050s 79.31 53
ADDPM 78.12,001p 65.03. 1040 04.87.0355 83.99, 1045
Pre-seg (Dice=75.43) | 75.43, 565 62.13,1560 06.59,0505 74.98 1674
ADDPM 79.12,0035 66.43, 1,70 04.23,0355 80.70, 55
Pre-seg (Dice=77.04) | 77.05,934 63.61,,55, 05.65,054; 81.70,,9¢7
ADDPM 79.47 0506 66691105 04.18,0755 84.94, 007
Pre-seg (Dice=78.54) | 78.54 4577 65.54, 509 05.26,050; 81.68 0046
ADDPM 80.36,4709 67.93, 126 03.87,0p45 84.50, 0557
Pre-seg (Dice=79.97) | 79.97,4776 67-34,1,01 04.19,0,13 82.27 307
ADDPM 81.40,4053 68.93,053 03.49,0,s; 83.80,055,

Dice Jaccard HD Precision
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Figure 7: Visualize the segmentation performance of ADDPM (T'=300, T"=200) based on AttUNet with different
segmentation performance and the performance of AttUNet with different segmentation performance. A1-8 represent the
pre-segmented AttUNet with different performances respectively, corresponding to the 8 pre-segmented models in Table 3.

different metrics of ADDPM under different pre-segmentation models. We observed that ADDPM outperforms all the
corresponding pre-segmentation models. Therefore, ADDPM can be combined with existing advanced segmentation
networks to further improve performance and obtain uncertainty estimates.

We also analyzed the segmentation performance of ADDPM based on the AttUNet network with different pre-
segmentation performance, as shown in the Table 3. Here we use AttUNet with different segmentation performance
during training as the pre-segmentation model. Table 3 shows that ADDPM all outperforms the corresponding pre-
segmentation models. Figure 7 also intuitively visualizes the performance of ADDPM and corresponding pre-segmentation.
We can easily find that the lower the performance of the pre-segmentation model, the greater the performance improve-
ment brought by ADDPM (especially in the three metrics of Dice, HD and Jaccard).
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Figure 8: The Dice score for different denoising methods with respect to different 7. And T is fixed at 300.

Table 4
The best segmentation performance of the different denoising methods and the corresponding optimal steps T
Method[CE MSE[T” [ Dice Jaccard HD Precision
M1 [/ x |150|81.31,070 69.13.1037 3-327.2613 83.50.086s
M1 | x 4/ |150|80.97 4735 68.68, 1056 3.705,7 33 84.03,0570
M2 |4/ X [200(81.45,0;,; 69.34, 044 3.453,5676 83.93,0558
M2 | x 4/ [200|81.14,;,; 68.91, 050 3.476,5716 83.78,056
M3 | x +/ [100[81.01,4735 68.74,1063 3-32942637 83-2% 0856

5.5. Ablation study of different denoising methods with truncating the final stages of the inverse
process

The truncating the final stages of the inverse process is achieved by denoising the noise prediction x;» through
a separately denoising network f,,. There are several ways to get the final segmentation result y from x;. Here we
compare these methods in detail by WMH segmentation task.

Method 1: The y is obtained directly from the x;». This method takes the x;» as the input of the denoising
network, and the denoising network outputs the y.

Method 2: The y is obtained by the x;» and the image I. The I is concatenated with the x;» as the input of the
denoising network, and the denoising network outputs the y.

Method 3: Based on the x», the denoising network first learns the noise n
noise n,_, is then subtracted from the x7 to obtain the y.

Based on the above three implementation methods, we also analyzed the impact of two different loss functions
(Cross entropy and MSE) on the denoising network f,,. Table 4 shows the best segmentation performance of the above

., contained in the x7. The estimated
T

methods and the corresponding optimal steps T". Figure 8 shows the Dice score for different denoising methods with
respect to different T". By varying the T"” among {50, 100, 150, 200, 250, 260, 270, 280, 290, 295}, we train ADDPM.
Compared with the other two denoising methods, Method 2 achieve better performance, and its performance is the
best when T is equal to 200. And the performance of the Cross-entropy on Method 2 is also better than MSE.

6. CONCLUSION

This paper proposes an accelerated denoising diffusion probabilistic model via truncated inverse processes (AD-
DPM) that is specifically designed for medical image segmentation. The key idea of ADDPM is to truncate the inverse
processes to consider only a small number of steps in the middle of the inference process. Experiments demonstrate
that ADDPM achieves superior performance compared to vanilla DDPMs, even with a significantly reduced number of
inference iteration steps (from 1000 steps to 100 steps in the best case of our experiments). And ADDPM outperforms
existing acceleration methods for DDPMs. Further, ADDPM can be integrated with existing advanced segmentation
models to further enhance segmentation performance and obtain uncertainty estimation.
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