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Abstract—The study of multi-modal brain networks has greatly
improved the efficiency of disease diagnosis and offers insights
into understanding the heteromodal relationships between brain
network organization and behavioral phenotypes. The integration
of data with multiple modalities facilitates characterizing the
interplay of anatomical, functional, and physiological brain
alterations or development. Graph Neural Networks (GNNs)
have recently gained popularity in the analysis and fusion of
multi-modal graph-structured brain networks. However, there is
still a great challenge to learn from other modalities for com-
plementary representations effectively, due to the sophisticated
and heterogeneous inter-modal dependencies. Moreover, most
existing studies often focus on specific modalities (e.g., only two
modalities or only fMRI and DTI), limiting their scalability to
other types of modalities. To address these limitations, we propose
a HyperComplex-valued Graph Neural Network (HC-GNN) that
models multi-modal networks as hypercomplex tensor graphs. We
investigate inter-modal dependencies by modelling HC-GNN as a
dynamic spatial graph, where the attentively learned inter-modal
associations are represented as the adjacency matrix. We carry
out statistical analysis on the saliency maps for associating disease
biomarkers. Extensive experiments on three datasets demonstrate
the superior classification performance of our method and its
strong scalability to various types of modalities. Our work
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presents a powerful paradigm for the study of multi-modal brain
networks.

Index Terms—Multi-modal learning, graph neural network
(GNN), neuroimage, hypercomplex-GNN

I. INTRODUCTION

HE pursuit of decoding brain network has provided us

with insights into the neural mechanisms of the brain
and the intricate relationships between individual brain dys-
functions and behavioral phenotypes [1]-[4]. Recent inves-
tigations have made significant progress in examining and
identifying connectome patterns in brain disorders such as
autism spectrum disorder (ASD) and Alzheimer’s disease
(AD), as well as behavioral phenotypes including full-scale
intelligence quotient (FSIQ), sex and age differences [5]-[9].
Furthermore, recent studies that conceptualize the brain as
a network have offered a more comprehensive perspective
in understanding the relationship between abnormal brain
activity and dysfunction. In this line, Graph Neural Networks
(GNNs) have been extensively utilized for connectome-wide
association studies (CWAS) and have emerged as state-of-the-
art tools for exploring the topological and spatial organization
of brain networks.

Recently, the integration of multi-modal networks has
emerged as a significant area of research. Brain networks en-
compass functional networks derived from functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG),
as well as structural networks constructed from diffusion ten-
sor imaging (DTI) or diffusion spectrum imaging (DSI) [10],
[11]. Exploring the relationships between different modalities
enables us to capture important complementary information
and enhance representations. Previous studies suggest that
multiple types of brain connectivity might be mediated by
each other and link multi-modal connectome for mediating
[12], [13]. Additionally, subtle abnormalities or misleading
representations within a single modality can be augmented
by incorporating another modality [14]. Moreover, multi-
modal studies allow us to explore brain states by examining
neuron activation and connections in vivo, providing a more
comprehensive understanding with distinct biomarkers [15],
[16]. Accordingly, it is natural and well-justified to combine
multi-modal information for brain network studies.

One of the challenges in multi-modal brain network studies
is that the multiple modalities usually have sophisticated and
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heterogeneous structures. Simply applying feature embedding
to the entire feature set is inefficient for capturing meaning-
ful representations across all modalities. Additionally, it is
nontrivial to effectively learn from each other modality to
enrich representations. Furthermore, medical data are typically
high-dimensional, but the available data samples are limited.
Incorporating a large number of features for multi-modal
learning would introduce unwanted noise and potentially lead
to overfitting that decreases performance. Machine learning
approaches implement feature learning methods for capturing
meaningful features, however, are limited in their performance.
Lastly, most existing models are designed for specific modal-
ities and lack scalability and generalizability to other types of
modalities.

A straightforward and natural way of exploring multimodal
data is to model multimodal data as multi-dimensional arrays,
known as tensors. Tensors have proven to be powerful and
promising tools for uncovering complex underlying structures
in data, allowing for the separation of common and inde-
pendent components [17]. Most tensor-based methods employ
tensor decomposition techniques, such as Canonical Polyadic
(CP) decomposition and Tucker Decomposition (TD), to
identify key features and improve learning efficiency [18].
However, most of these approaches have limitations in terms
of lossy transformations and may overlook important intrinsic
complementary information, resulting in suboptimal results.

In this regard, we propose a HyperComplex-valued Graph
Neural Network (HC-GNN) for multi-modal brain network
learning, which enables to enrich features and the deep
interactions of representations through cross-embedding and
cross-aggregation in an end-to-end manner. Specifically, we
construct tensor graphs by formulating multimodal node fea-
tures as tensors and further implement hypercomplex-valued
neural network (HNN) [19], [20] to encode tensor represen-
tations. The approach involves constructing composite tensors
to learn latent multimodal representations and generate high-
order generalizations of matrices to capture the consistency
among different modalities. Moreover, the deep intersection
behind HNN allows for richer representations by expressing
neuron outputs with multiple indices.

In addition, in this study, we propose to implement the
dynamic mechanism to capture the inter-modal feature depen-
dencies to relate attentive multi-modal dependency as the adja-
cency matrix. The approach adaptively characterizes the intrin-
sic associations between different modalities and addresses the
issue of unknown node relationships in multi-modal graphs.
Moreover, most existing multi-modal networks overlook the
importance of neuronal synchrony, which involves information
gating and dynamic binding of inter-modal representations. To
address this, we incorporate a gating mechanism to control
information flow and dynamically bind inter-modal associa-
tions in an attentive manner. Extensive experiments on three
real-world datasets demonstrate that our proposed method is
a superior tool for multi-modal brain network representation
learning, which outperforms other baselines in terms of pre-
diction performance, generalizability and scalability.

The rest of our paper is structured as follows. We would like
to review related methods in terms of connectome study, multi-

modal neuroimaging, and hypercomplex-valued approaches in
Section II. The details of the proposed model are introduced
in Section III. Section IV describes the experiment settings.
The results are provided and discussed in Section V and VI.
Section VII draws the conclusions of the work.

II. RELATED WORKS
A. Brain Connectome Study

Decoding the brain network provides valuable insights into
the relationship between brain network organization and be-
havioral characteristics. Connectome-wide association studies
(CWAS) have been successful in identifying dysconnectivity
patterns in brain disorders. Statistical tools such as Network-
based statistical (NBS) analysis [21] and multivariate distance
matrix regression (MDMR) [22] are commonly used for
quantifying connectome reorganization across the entire brain
network. Machine learning models, such as SVM and random
forest, are then employed for classification using the identified
key biomarkers [23], [24]. However, these approaches have
limitations in terms of manually extracting features and often
yield limited performance.

Deep learning approaches have prompted a shift in connec-
tome studies towards subject-level predictions with promising
accuracy. These approaches include Multi-layer Perceptions
(MLP) [25], Convolutional Neural Networks (CNN) [26], [27],
and Graph Neural Networks (GNN) [28]-[30]. In particular,
BrainNetCNN treats brain connectome networks as grid-like
data and proposes a convolutional neural network to capture
topological locality [26]. [31] suggests using Deep Belief
Networks (DBNs) on functional connectivity to distinguish
autism spectrum disorder. Graph-based methods have also
been proposed to investigate graph isomorphism and structural
topology properties [32], [33]. Although the connectome in-
corporating the strength of connections in their edges assumes
a graph-like organization, the connections are limited to de-
pict sophisticated and non-linear brain structure relationships
[34]. To address the issue of unclear graph structure, several
strategies have been proposed to avoid potential aggregation
of misleading contextual information [35], [36]. DGCNN
dynamically gathers nearby information to recover topology
for learning [37]. [34] suggests learning the graph structure
based on the small-world model. [38] aggregates the top-
k nearest nodes to update node features. In this study, we
employ the dynamic mechanism to model attentive inter-node
dependencies.

B. Multi-modal graph learning

Multi-modal neuroimaging technologies have provided
unprecedented opportunities for disease diagnosis and
connectome-behavior association studies. Deep learning meth-
ods are feasible to capture more meaningful features and
contribute to a better understanding of brain network. For
example, [27] proposes a two-layer convolution approach
that simultaneously processes fMRI and DTI data. M-GCN
introduces regularization of convolution on functional connec-
tivity using structural graph Laplacian [39]. [40] implements a
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Tensor graph construction. First, we perform spatial alignment to map multi-modal brain networks into the same space. Next, we formulate the

concatenated multi-modal multi-dimensional array as a tensor graph. In this graph, there are M nodes, with each node represented as a tensor.

fusion network to integrate functional and structural magnetic
resonance images.

Furthermore, well-established graph-based models can ef-
fectively capture multi-modal representations. For instance,
[41] constructs a graph with variational edges that incorpo-
rate multimodal features. [42] applies graph hashing learning
to preserve the original semantic spatial relationships. The
use of hypergraphs provides a strategy to capture depen-
dencies among nodes by constructing hyperedges based on
each modality. Examples include Hypergraph Neural Net-
works (HNN) [43] and Dynamic Hypergraph Neural Networks
(DHGNN) [44]. Additionally, [45] proposes a graph parser
and matcher to capture the correspondence between nodes
from different modalities. In another approach, MMP-GCN
proposes a penalty term to fuse one modality using multi-
center and multi-channel mechanisms [46]. Triplet Attention
Network introduces a triplet network with self-attention to
map high-order multi-modal representations [47]. However,
many of these studies either overlook important complemen-
tary information between modalities or lack generalization
capabilities to handle data with more modalities.

C. Hypercomplex and Complex-valued neural networks

Recently, there has been increasing attention on
Hypercomplex-valued neural networks (HNNs) and Complex-
valued neural networks (CVNNS5) in signal processing, as they
have shown the ability to achieve competitive performance
while reducing parameters [48], [49]. HNNs offer a new
perspective for enhancing representational capacity by
utilizing hypercomplex numbers instead of the commonly
used real-valued numbers. By leveraging the interactions
among the real and imaginary units, HNNs can capture internal
relationships in inputs and preserve preexisting correlations
[20], [50], [51]. Moreover, studies have demonstrated that
hypercomplex representations provide better generalization
performance [52], can correlate information from multiple
fields [53], and improve gradient regularization [54].

In recent years, there has been a growing body of research
exploring the potential use of hypercomplex neural networks
in various domains such as image processing, natural language
processing, and signal processing [55], [56]. For instance, [57]
applied complex-valued neural networks for object detection in
images, with depth sensors represented as the imaginary part.
[20] introduced a family of parameterized HNNs and their
applications in multi-dimensional images. [58] developed a

quaternion convolutional neural network for automatic speech
recognition, and [59] utilized hypercomplex context for scene
graph generation. However, there have been few studies inves-
tigating the potential use of hypercomplex neural networks in
multi-modal graph learning. In this work, we address multi-
modal representation learning by formulating multi-modal data
as hypercomplex tensors, which is extended from our previous
study [60]. We represent multiple modalities as real and multi-
imaginary parts to facilitate dynamic interactions.

III. METHOD

A. Problem Definition

Brain Network Graph: The derived brain networks from
neuroimages or EEG are symmetric postitive semidefine matri-
ces X € RMXM 'wwhich are derived by mapping the input into
a template with M regions. Each element x;; of X denotes a
co-variance or connectivity strength between the region ¢ and
7. Traditionally, the brain network is formulated as a graph
G = (V,€&), where the sets V and £ denote the node and
edges respectively. For each vertex v; € R™, the node feature
is built by the ¢-th column or row in the derived matrices. The
edges £ € R™*™ are represented by the matrices X directly.

Dynamic Graph: Unlike most existing graph studies with
explicit and clear graph structures, the brain network graphs
remain unknown, where the derived matrices fail to model
sophisticated relationships of the brain regions. The dynamic
mechanism has been widely used for modeling brain graphs
[34], [38], [61]. In detail, for a graph G = (V, &), all the
node features H € RM™*M and adjacency matrix A € RM*M
are obtained by learning mappings from the input: fy : X —
V, fe : X — £. The mapped graphs are denoted as dynamic
graphs.

Multi-modal brain graph learning: In this study, we
leverage various types of multimodal brain networks to ex-
plore connectome-phenotype associations. The pre-processed
brain networks are mapped into the same spatial template.
Accordingly, all types of brain networks are in the same di-
mension, Xg, X1,..., Xp_1 € RMXM _An input is expressed
as G = {Go, G1,...,Gp_1}, where G4 denote the d-th modal
graph. Formally, given a set of graphs G = {G1, G, ...,Gn}
with a few labeled graph instances, the goal of the study is
to distinguish the disease or the phenotype as a graph multi-
modal classification task with a mapping fg: G — ).
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B. Hypercomplex Tensor Graph Construction

As shown in Figure 1, our first step is to parse and map
different types of brain networks into a unified space through
spatial alignment. The specific details of spatial alignment
will be introduced in the pre-processing experiments section.
Subsequently, the pre-processed arrays are transformed into a
tensor graph for each participant. This graph consists of M
nodes, with each node represented as an array X; ¢ RMX*D
Here, M corresponds to the number of regions of interest
(ROIs) in the brain network, and D represents the number
of modalities incorporated.

Node. The features of each modality are represented in real
or one imaginary unit. We provide a common example in
Figure 1 involving two modalities. In the case, one modality
is represented as the real part, and the other is represented as
the imaginary part. For more modalities, multiple bases (e.g.,
(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) for four modali-
ties) are utilized.

Edge. We apply the dynamic strategy to model edges
dynamically by a mapping as: f¢ : {Xo,X1,..., Xp_1} — &.
The mapping is obtained by learning an embedding though
hypercomplex convolution.

C. Preliminaries of complex-valued neural networks

In this section, we would like to firstly introduce the
complex-valued operations in neural networks, and extend it
into the hypercomplex.

1) Complex convolution.: For a complex filter matrix
W =W, +iW;, the convolution on an input x = x, + iX;
is expressed as:

Wixx = (W,x, — W;x;) +i(W;x, + W,x;) (1)

The W, and x, denote the real parts and W;, x; are
imaginary parts, and = = v/—1. For multi-modal learning, this
function can be considered as a convolution by a filter matrix
W,., leading to W,.x, + ¢W.,.x;, and calibrated with another
field W;. In addition, matrix multiply operation is in the same
way by reference to Eq. (1).

2) Complex-valued activation function.: Activation func-
tions play essential roles for locating meaningful nonlinear
representations. Previous studies have proposed activation
functions for complex-valued networks including CReLU,
ModReLU, zReLLU and TReLU [19], [62]:

CReLU(x) = ReLU(x;) + iReLU (x;) (2)

CReLU enables non-linear activation on the real and imagi-
nary parts respectively.
modReLU (x) = (x| + b)ﬁ,if x| +b>0,else 0. (3)
x
modReLU maintains the phase after the activation and lever-
age a trainable bias parameter b.

™

3] )

zReLU filters activation maps when the phase is in the range
of [0, ).

zReLU (x) = z, if ¢(x) € [0,

3) Complex-valued Readout: Given a complex-valued fea-
ture vector, a readout function is to convert the complex
numbers into real by Readout(x) = \/x2 + x7,x € C.

D. From complex to hypercomplex

The complex-valued operations are only available for com-
plex numbers. Since we model the modalities with the real and
multiple imaginary units, the complex-valued neural network
is only able to model two-modality data. In this regard,
hypercomplex neural networks are feasible to generalize to
more modalities. For a basis of {1,41,12,...,ip_1}, an input
with D modalities is formulated as:

X:X0+i1X1+i2X2+...+iD_1XD_1 (5)

The corresponding complex operations are reformulated into
the hypercomplex. For example, the addition of two hyper-
complex numbers x = Xo + i1X1 + 7;2X2 + ...+ iD_lxD_l
and y = yg +11y1 + i2y2 + ... + ip_1yp—1 is defined in a
component-wise manner as:

x+y = (Xo+Yyo)+i1(x1+y1)+...+ip-1(Xxp-1+yp-1) (6)
The product between x and y, denoted by the juxtaposition
of x and y, is given by:
D-1
X®y = (xoyo + Z Xy Y vlu,0)

u,v=1
D-1

+ Z‘1(x0yl + X1Yo + Z Xuyvauv,l) + ...

u,v=1
D-1

+ip-1(Xoyp-1+Xp-1yo0 + Z XuYuv@uv,D—1)
uw,v=1
(7

where the product between i, and ¢, is the hypercomplex
number in the intersection as:

Tyly = Quu,0Ft810yup, 1+ FD-10yy,D-1,U,V € {1, ...,D—l}

®)
The equation (8) determines a multiplication table.
TABLE 1
EXAMPLE OF HYPERCOMPLEX MULTIPLICATION TABLE FOR D = 4.
® 1 71 12 13
1 1 i1 2 3
i1 i1 -1 i3 )
i2 12 i3 -1 i1
i3 | 13 12 —i1 —1

Hypercomplex neural network operators follow the formu-
lations in most cases as (6) and (7). Other operators are
obtained in similar ways. For instance, the CReLU activation
is formulated as:

CReLU(x) = ReLU (x¢) + i1 ReLU (x1) + iaReLU (x2)

+ ...+ iD_QReLU(XD_Q) + iD_lReLU(XD_l)

©))

Moreover, hypercomplex operators satisfy the following
properties to meet deep interactions in deep neural networks.

Property 1. Forall o, 8 € R and x,y,r € H, we can obtain:
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Fig. 2. Illustration of the proposed HC-GNN, with hyercomplex node embedding, hypercomplex edge embedding, and edge-to-node convolution. An encoder
is employed to extract deep features from each modality. These modality-specific features are then utilized to construct the hypercomplex nodes.

e X = aXg + i1(OéX1) + ...+ iD,1<OzXD71) = X

o (ax)(By) = (afB)(xy)
e X(y+r)=xy+xrand (x+y)r=xr+yr

Property 2. Given an real-valued loss L, and a complex
variable z = zg + 1121 + ... + ip_1Zp—_1, we can obtain:

Voo 0L _ 0L 0L oL . 0L
L&) = Oz - aZO “ 821 7128Z2 ZD_I(‘?ZD,l
(10)

Hypercomplex neural networks offer the ability to model
multi-modal inputs by utilizing different imaginary units. For
instance, the quaternion domain (with D = 4) is suitable for
processing 3-modality or 4-modality data, while the octonion
domain is suited for more modalities. In practical applications,
complex and quaternion neural networks are able to satisfy
most multi-modal learning cases.

E. HC-GNN

To aggregate inter-region information and enable graph
convolution on tensor graphs, we utilize the hypercomplex
convolution operation to embed hypercomplex tensor repre-
sentations. The structure of the proposed HC-GNN is illus-
trated in Figure 2. The embedded node representations and
adjacency matrix are then used to construct a dynamic graph.
Subsequently, we apply gated hypercomplex graph convolution
to capture the multi-modal topological information by consid-
ering feature interactions within the graph domain.

1) Hypercomplex node embedding: The multi-modal node
features are aggregated from the connection features to the
centroid node with a hypercomplex multi-layer perception
embedding. The output features are obtained by a weighted
sum. In detail, given a vertex v;, the corresponding features
are obtained from its connections N; = {x1,z 2, ..., M }:

hj = fn(Nj) = Z Wk * Tjk
keN(4)
= Z (Wg,0 + 1wg,1 + 2wk 2 + ... + Ip_1Wk, D—1)*
keN(4)
(Tjk,0 + 11%jk,1 + t2Zjk2 + ... + iD_1Tjk,D-1)

(1)

where w = wg + 1wy + f2ws + ... + ip_jwWp—_1 1S a
hypercomplex learnabel parameter for D modalities learning.

2) Dynamic hypercomplex edge embedding: Usually, the
edge connections should be conditioned on the node field.
While in the brain network study, the derived brain connectiv-
ity represents the linear associations to some extent. We use a
transformation matrix W to estimate the dynamic adjacency
matrix L from the connectivity x by:

H M
117 127 M x M
Liv=0Y Y wil, +wiL, LeC"M (12
h=1m=1
M
Lijk= Y Wi yXjm + Wity Xk, L € CTMM(13)
m=1

where L; ;. represents the j-th row and k-th column element
of L, while IA,h,j’k is the j-th row and k-th column element
in the h-th feature map of L. w'!, w'2, w?! and w?? are
learned weights, and ¢ is a sigmoid function.

3) Edge-to-node convolution: The edge-to-node (E2N)
convolution is proposed by BrainNetCNN [26], which takes
an adjacency matrix from each feature map as an input and
outputs a vector. In the hypercomplex operators, the output,
O, of an E2N layer is obtained as:

H M
Onj=Y_ > wil,Ljm+wi, Ly ;,0eCTM (14)
h=1m=1
4) Gated Graph Convolution: In this study, we discard the
spectral graph convolution, and apply the spatial aggregation
to simplify. The hypercomplex graph convolution layer is
proposed by replacing the real kernel with hypercomplex-
valued kernel. Given a hypercomplex-valued adjacency matrix
L = Lo+ Ly + ... +tp_1Lp_1 and an input feature
H=Hy+i:#H;+...+ip_1Hp_1, the complex-valued graph
convolution is obtained by matrix multiply:

S=GCN(LLHW)=LoH oW (15)

Moreover, the hypercomplex operators inevitably compute
and fuse multi-modal representations, which ignore the het-
erogeneity of inter-modalities. In this regard, we propose to
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leverage the gated transformation between different modalities.
The gating mechanism has become a common tool in a neural
network that facilitates the learning of longer-term relation-
ships and protects the cell state from undesired updates [63].
Intuitively, the gates determine the amount of a signal to pass.
In this study, it is implemented by an attention mechanism as
an element-wise product and is applied to the graph message
passing, resulting in the scaling of the inter-unit aggregation.

Gup = U(Wuv,l “Zy t+ Wuv,2 “Zy + bu'u)
Vu,v € {1,2,...,D —1}

where W and b are learnable parameters. g, denotes gates
for the aggregation between the u and v hyperimaginary axes.

And o is the sigmoid activation functions. Notably, z repre-
sents the transition state representations, where each element
z(j) determines the j-th node by:

(16)

z(j) = |{Avgren ) (Tr), Mazpeny(ze)} (1)

|| represents the concatenation operation. Accordingly, the
gates for inter-axis filtering can be written as a gate matrix

Jx as:

1 90,1 go,D—1
91,0 1 91,D-1
92,0 92,1

gp-1,0 9p-1,1 - 1

To summarize, the hyhercomplex graph convolution layer
can be formulated with Eq. (15) and (16) as:

H =0olg, 0 (LOoH) @ W]

We assume P = L @ H'~!
and we can get:

(18)
= PO + i1P1 + ..+ iD_1PD_1,

Pq
Prd o)
Pp_

where the ©® represents the element-wise product of the
gate matrix g, and the hypercomplex multiplication table.

g o P = [1, s iuiv}

ceey guv] © [L

For example, when we get D = 2 modalities, the gated
convolution is formulated as:
oLeH!
g ey @0
= L0H07 —L1H17 +90,1i(Lon —|—L1H07 )

F. Biomarker Interpretation

To inspect the interpretability of our proposed HC-GNN, we
employ the saliency maps that have been widely used for bi-
ological explanation to identify those important brain regions.
In detail, we extract the activation maps of the aggregated
graph feature maps S and performed the statistical CWAS
approach, multi-distance multi-variance regression (MDMR)
[22] for group-wise comparison.

In detail, a distance matrix in the subject space was calcu-
lated for each region. Within each distance matrix, the distance
between the saliency maps S for every possible subject pair
among all groups related to region ¢ was calculated by

di, =+/2(1 2D

- Tuv)

where dis denotes the distance of the saliency maps of subject
u and v, and 7., represents the linear correlation between S,
and S, by reference to previous works [22], [24]. A pseudo
F-statistic analogous to an F-statistic from a standard ANOVA
was performed. The total sum of squares for region i was

obtained as N N
ssh=13" 3

T u=1 v=u+1

(22)

where n = nj + ng, the total number of subjects. Meanwhile,
the within-group sum of squares was formulated By

SS%/V_iz Z dﬁ) ZU+7Z Z dﬁ) bzw

u=1v=u+1 u=1v=u+1

(23)

where n; and no denote the number of each group respec-
tively. €5, represents the belonging of the subject u and v,
which equals to one when v and v within the same group. And
then the F-statistic score of the region ¢ would be obtained by
SSL — 88y,
SSy

In addition, a random permutation with 2000 times to
subjects was applied to simulate the null distribution, and
the pseudo F-statistic score was recomputed for each time.
The p-value was finally calculated by counting the pseudo F-
statistics from permutated values greater than those derived
from the original data. This step was repeated for all ROIs.
The Bonferroni correction was applied to control the false
positive rate. And the p-value < 0.05 after the correction was
determined significant within the experiments.

F'=(n-1) (24)

IV. EXPERIMENTS
A. Datasets

Our proposed HC-GNN is feasible to model various types
of brain networks. In this study, three real-world datasets are
employed. All the datasets are enrolled for multi-modal graph
classification. The detailed demographic information is listed
in Table II with gender (Male/Female), age (Mean+Std), and
other phenotypic information (Mean=+Std).

1) ADNI Dataset: The ADNI dataset! is a longitudinal and
multi-modal neuroimaging dataset. We have collected a total
of 442 subjects for evaluation, which includes 142 normal
controls (NC), 151 individuals with mild cognitive impair-
ment (MCI), and 149 patients diagnosed with Alzheimer’s
disease (AD). The subjects were selected from various subsites
of ADNI, namely ADNI-1, ADN-2/GO, and ADNI-3. Each
participant in the study has provided both fMRI and DTI
data. To ensure the data integrity and avoid redundancy, we
excluded duplicated scans, resulting in a single fMRI and DTI
scan per subject being included in the analysis. The subjects
were categorized into three groups AD, MCI, and NC based
on standard clinical criteria, including assessments such as
Mini-Mental State Examination (MMSE) scores and Clinical
Dementia Rating (CDR). The primary objective of using the
ADNI dataset in this study is to evaluate the coupling between
functional and structural connectomes during the progression
of Alzheimer’s disease.

Uhttp://www.adni-info.org/
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TABLE II
CHARACTERISTICS OF PARTICIPANTS OF DIFFERENT DATASETS.

Dataset Task Modalities Group Number  Scale (Mean£Std)  Gender (M/F)  Age (Mean=Std)
NC 142 - 81/61 75.949.7
AD 149 - 87/62 76.948.2
] NC 586 - 491/95 16.8+£7.7
ABIDE-I Task-2 fMRI (multi-type) ASD 328 _ 466/62 170|pm84
NC 677 - 4297248 14.949.6
ABIDE-II Task-2 (Testing) fMRI (multi-type) ASD 559 _ 466/93 14.3+8.5
NC 105 - 72/33 10.3£3.6
HBN-ADHD Task-2 fMRI, EEG ADHD 150 - 107/43 9.94+3.0
SWAN 0.474+1.04
HBN-Phenotype Task-3 fMRI, EEG SP 616 4.25+3.81 384/232 10.5+3.1
AP 7.914+4.83

2) ABIDE dataset: The ABIDE database’ includes Tl
structural brain images, resting-state functional MR images,
and phenotypic information from 17 different imaging sites.
The initial ABIDE-I dataset consists of 528 individuals diag-
nosed with autism spectrum disorder (ASD) and 586 controls.
We employ the ABIDE dataset to evaluate the performance
of HC-GNN in studying multiple types of functional con-
nectomes. These connectomes are constructed using various
methods, including Pearson coefficient correlation, partial cor-
relation, and tangent space of covariance matrices. To further
assess the generalization ability of HC-GNN, we implement
the ABIDE-II dataset for testing, which comprises 677 healthy
controls and 559 patients with ASD. This dataset allows us
to test the effectiveness of HC-GNN on a broader sample
population and validate its performance beyond the initial
dataset.

3) HBN dataset [64]: The HBN dataset was obtained from
a cohort of children and adolescents with age ranging from
5 to 21 years. It includes multiple tasks of functional MRI
(fMRI) and electroencephalography (EEG) recordings. For the
purpose of this study, we specifically extracted the resting-
state fMRI and EEG data to construct the corresponding
functional connectomes. Our analysis focused on a total of 616
participants who had both behavioral and cognitive recordings
available. The HBN dataset is divided into two distinct parts:
HBN-ADHD and HBN-Phenotype. The HBN-ADHD subset
consists of 105 healthy control individuals and 150 patients di-
agnosed with attention-deficit/hyperactivity disorder (ADHD).
On the other hand, the HBN-Phenotype cohort comprises 616
participants and includes measurements of various behavioral
phenotypes. We utilize this dataset to investigate the coupling
between fMRI and EEG functional connectomes and their
relationship with behavioral phenotypes and diseases. By
examining the functional connectome patterns, we aim to gain
insights into the associations between brain connectivity and
specific behavioral characteristics or disorders.

Based on the three datasets, our experiments were designed
to address three specific tasks:

Task-1: Preclinical Diagnosis of AD: Mild Cognitive
Impairment (MCI) is considered a significant stage for the

Zhttps:/fcon_1000.projects.nitrc.org/indi/abide/

preclinical diagnosis of Alzheimer’s disease. To investigate
this, we utilized the fMRI and DTI of the ADNI dataset to
diagnose the progression of AD.

Task-2: Psychiatric Disease Diagnosis: The ABIDE
and HBN datasets provide valuable information on chil-
dren with autism spectrum disorder (ASD) and attention-
deficit/hyperactivity disorder (ADHD), respectively. We ex-
tracted and matched patients and healthy controls from these
datasets to facilitate the diagnosis of psychiatric diseases by
using multi-modal functional connectomes.

Task-3: Behavioral Phenotype Prediction: Psychiatric and
learning disorders are prevalent and debilitating conditions
throughout the lifespan. Behavioral measures and cognitive
tasks play a crucial role in diagnosing these disorders. To
predict behavioral phenotypes, we utilized the HBN dataset
for the prediction of Strengths and Weaknesses of ADHD
Symptoms and Normal Behavior Scale (SWAN, ranging from
-3 to 3), Attention Problem (AP, ranging from 0 to 20) scores,
and Social Problem (SP, ranging from O to 19) scores.

B. Pre-processing

fMRI. All fMRI images underwent pre-processing using the
Configurable Pipeline for the Analysis of Connectomes (C-
PAC) pipeline [65]. This included several steps such as skull
stripping, slice timing correction, motion correction, global
mean intensity normalization, nuisance signal regression with
24 motion parameters, and band-pass filtering (0.01-0.08 Hz).
The functional images were then registered to the standard
anatomical space (MNI152). For region-based analysis, the
mean time series for a predefined set of regions of interest
(ROIs) were computed and normalized to have zero mean and
unit variance. In the ADNI and ABIDE datasets, we used the
Schaefer atlas [66] with 100 ROIs to map the fMRI images
into parcellations. In the HBN dataset, we utilized the Desikan-
Killiany template with 68 ROIs [67] for the cortical cortex
learning of both EEG and fMRI data.

DTI. The DTI images were pre-processed by image denois-
ing, head motion, eddy-current, susceptibility distortion, and
field inhomogeneity correction by MRtrix-3 [68]. To recon-
struct the fiber tracts, we utilized the 2nd order Integration over
Fiber Orientation Distributions method [69], resulting in 10
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million streamlines. Subsequently, a Spherical-deconvolution
Informed Filtering of Tractograms technique [70] was applied
to reduce the streamline count to 5 million, while preserving
the essential structural information. The structural connectivity
network was constructed based on the number of streamlines
connecting each pair of brain regions. In the ADNI dataset, the
DTI images were mapped to parcellations using the Schaefer
atlas with 100 ROIs [66].

EEG. The EEG data were recorded in a sound-shielded
room at a sampling rate of 500 Hz, using a bandpass filter of
0.1 to 100 Hz. For each participant, the head circumference
was measured, and an appropriately sized EEG net was
selected. To improve data quality, the EEG signal underwent
pre-processing steps. It was filtered using a FIR filter ranging
(8-12) Hz which reflects cognitive and memory performance in
particular [71]. Noisy channels were identified and removed,
and interpolation techniques were applied based on the activity
of surrounding channels. To align the EEG data with fMRI
space, we performed source reconstruction pre-processing
using the Brainstorm software [72]. To analyze the EEG data,
the cortical surface was divided into 68 anatomical regions of
interest based on the Desikan-Killiany atlas [67]. We focused
on the middle 2 minutes of the EEG recording and calculated
Pearson correlations by computing correlation coefficients on
successive non-overlapping 10-second segments of the EEG
time series. The correlation matrices obtained from each
segment were averaged to calculate functional connectivity for
each participant.

C. Implementation details

In our implementation, we utilize the GRU as the brain
connectome encoder that parses the brain network as M
sequences with M features. The number of GRU layers is
determined through a grid search ranging from 1 to 3. The
outputs of the hypercomplex graph convolution layer are
then fed into a 3-layer multi-layer perceptron classifier. This
classifier is followed by a CReLU activation function and a
dropout layer to enhance model generalization. To train the
models, we set the learning rate as 3e-4 and the weight decay
as Se-5. All models in this study are trained for 400 epochs,
and early stopping is employed if the loss does not decrease for
50 epochs. The training process is performed using PyTorch
on a single NVIDIA 2080-Ti GPU. For evaluation, we employ
a 10-fold cross-validation strategy, where 10% of the samples
are randomly selected for testing in each fold. In the disease
diagnosis experiments (Task-1 and Task-2), we assess the
performance based on diagnosis accuracy (Acc), sensitivity
(Sen), and specificity (Spe). In the behavioral phenotype
prediction experiments (Task-3), the performance is evaluated
using mean absolute error (MAE), mean squared error (MSE),
and Pearson correlation coefficient (PCC).

D. Competitive methods

In this study, we compare our proposed HC-GNN with base-
line machine learning approaches and well-estimated graph
methods. These methods include:

Machine learning baselines. In order to establish a baseline
for classification, we compare our proposed method against
conventional machine learning approaches, the support vector
machine (SVM) and multi-layer perceptron (MLP). To obtain
a classification score for each subject, we input the upper
matrix of the brain networks into these classifiers. For the
MLP, we explore different layer settings ranging from 1 to 4.

Tensor-based approaches. For the multi-modal data learn-
ing, tensor-based approaches such as CP and Tucker methods
would extract key features for classification. In our evaluation,
we employed these tensor-based methods, referred to as TD-
MLP and CP-MLP, respectively. These methods involved ma-
trix decomposition techniques to extract the principal features
from the tensors. The extracted features were then vectorized
and fed into a multi-layer perceptron (MLP) for classification.
Similarly, the TD-MLP method utilized tensor decomposition
to obtain essential features, which were subsequently fed into
an MLP for classification purposes.

Convolutional Nerual Networks. BrainNetCNN [26] was
first proposed to tackle the brain graph networks as grid-like
data, which achieves state-of-the-art performances in brain
network studies. BrainNetCNN was implemented by multiple
convolution layers, where various types of brain connectivity
matrices are concatenated by channel.

Supervised Graph Neural Networks. BrainGNN [28]
introduces ROI-aware graph convolutional layers and ROI-
selection pooling layers for neurological biomarker prediction.
In our implementations, the original partial Pearson and full
correlation coefficients were replaced by multi-modal brain
networks, and the hyperparameters are searched in a grid
search. Moreover, M-GCN [39] focuses on aggregating func-
tional representations by incorporating regularization with the
structural graph Laplacian. The HGNN (Hypergraph Graph
Neural Network) [43] leverages hyperstructure to encode
multi-modal connectivity through hyperedges. The DHGNN
(Dynamic Graph Hyper-Neural Network) [44] extends the
HGNN framework to handle dynamic graphs. For these three
models, we implemented them based on the original proposed
architecture as described in their respective papers.

Semi-supervised Graph Neural Networks. Transductive
Graph Neural Networks (GNNs) offer valuable capabilities for
studying medical neuroimages by semi-supervision, especially
in scenarios with limited sample sizes. In population-GCN,
a population graph is built, where each node is represented
by concatenating the vectorized upper matrix of the brain
networks of a subject. Key features were selected by recursive
feature elimination and vectorized into a set for each vertex
and then concatenated. The number of selected features is
searched. The number of selected features is determined
through a search process with a step of 200. The adjacency
matrix is constructed using both phenotype values including
gender and age and the similarity between node features.
In MMP-GCN [46], 200 multi-modal features are selected
for the classification of the transductive graphs. In addition,
we discarded the multi-center information for the ADNI and
HBN datasets, and applied the gender and age information to
construct the graph.

Others. The Triplet Attention Network (TAN) [47] is a
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TABLE III
CLASSIFICATION PERFORMANCE ON THE TASK-1: PRECLINICAL DIAGNOSIS OF AD IN TERMS OF ACCURACY (ACC %), SENSITIVITY (SEN %), AND
SPECIFICITY (SPE %) AMONG ALL COMPETITIVE MODELS.

NC vs MCI MCI vs AD NC vs AD

Model Type Acc T Sen 1 Spe 1 Acc T Sen 1 Spe T Acc T Sen T Spe T
SVM ML 522493 52.4£9.0 52.2+10.6 60.0+£9.9 59.8£14.9 60.8+7.8 75.4£9.8 77.5£14.0 75.3+8.8
MLP ML 70.11+8.8 75.0£15.8  73.1£13.6 69.1+£5.4 73.6£9.3 70.1£9.9 77.8£6.5 76.6+6.8 80.4+8.3
CP-MLP Tensor, ML 73.94+10.2  77.2410.1 75.8+16.1 75.6+£7.2 77.4£10.8 75.9+7.8 75.2£8.1 78.7£9.5 73.6+£7.9
TD-MLP Tensor, ML 73.85+7.6 73.949.5 76.61+9.5 732459 79.8+12.7 70.7+5.4 7594109 82.6£14.7  73.2£10.6
BrainNetCNN [26] CNN 72.08+7.1 759493 70.4£10.8 71.84+5.0 74.4£6.8 70.8+5.0 81.3+11.3  81.04+11.7  82.1+10.1
BrainGNN [28] GNN 76.0£5.9 81.1+9.9 71.5£12.6 743+4.8 76.6£5.2 73.5£12.8 82.0+24 84.6+5.6 76.8+6.1
M-GCN [39] GNN 75.7£6.3 80.1+4.8 72.9+6.1 75.8£6.9 76.1£8.1 75.0£9.0 84.4+5.7 84.1£6.0 85.6+7.1
HGNN [43] GNN 78.1£6.6 80.2+8.4 74.7+£9.4 76.8+£5.5 83.5+12.8 76.0£7.5 81.4+8.0 82.5+6.1 82.0+12.1
DHGNN [44] GNN 79.2£6.0 83.0+9.9 77.6£7.3 75.8+4.2 8544129 73.9+8.4 82.54+4.1 86.44+10.7 82.1+114
Population-GCN [32] semi-GNN 75.5+5.9 82.54+10.0 71.6£8.0 75.5£5.9 80.2+14.4 74.0+5.4 82.0+7.5 85.9+75 75.9£8.0
MMP-GCN [46] semi-GNN 80.6+7.6 86.24+10.2  79.5+10.1 | 79.6£11.0 82524140 82.24+14.3 | 844+11.1 88.1%+12.4  851%13.2
TAN [47] Attention 80.2+5.4 82.0+11.1  79.24+11.6 81.243.5 83.7+8.8 79.0£9.7 85.9+4.5 89.3+129  86.3£10.3
HC-GNN (Ours) Tensor, GNN 81.5+4.1 90.61+10.0 80.7+13.4 | 82.5+6.3 88.018.7 82.2412.6 87.51+8.4 91.9+6.5  88.0+11.3

cutting-edge network specifically designed for brain disorder
diagnosis. TAN adopts a Transformer-like architecture that in-
corporates self-attention and MLP for effective representation
learning. In our study, the hidden size is set as 32, and 2 self-
attention encoders with 4 heads are implemented. The dropout
rate is set as 0.4.

V. RESULTS
A. Evaluation results on different tasks and datasets

1) Classification on the progression of AD: The quantitative
results for the three classification sub-tasks of Task-1 (NC
vs. MCI, MCI vs. AD, and NC vs. AD) are presented in
Table III, with the average and standard deviation across
folds. Overall, tensor-based approaches (CP-MLP and TD-
MLP) demonstrate promising performances across all three
classification sub-tasks compared with MLP and SVM. These
methods provide simple and efficient ways to model multi-
modal data. In comparison to machine learning methods, deep
learning models, especially graph neural networks, consis-
tently enhance classification performance, such as M-GCN and
HGNN. This suggests that the structural topological properties
of the brain are valuable for distinguishing the preclinical
AD. Besides, the semi-supervised GNN method, MMP-GCN,
outperforms most supervised GNN methods. However the
condition is opposite in Population-GCN. This indicates that
such transductive graph neural networks are still limited by
the way of constructing the graph adjacency matrix and node
features, which limits their generalizability to different tasks.
Furthermore, when considering the three classification sub-
tasks, our proposed HC-GNN emerges as the top-performing
approach among all models, achieving accuracies of 81.5%,
82.5%, and 87.5% in distinguishing NC from MCI, MCI
from AD, and NC from AD, respectively. This outstanding
performance can be attributed to the deep intersection among
modalities of the hypercomplex graph network.

2) Classification of the psychiatric disease diganosis: Table
IV presents the comparison results for distinguishing ASD
and ADHD from NC on the ABIDE-I and HBN datasets, re-
spectively. The table includes the mean and standard deviation
across folds, with the best results highlighted in bold and the

second-best results underlined. Upon analyzing the results, we
observe that, similar to the ADNI dataset, GNN approaches
generally perform the best in most cases. Interestingly, tensor-
based methods achieve promising results and outperform some
GNN models. For instance, on the ABIDE-I dataset, CP-MLP
and TD-MLP exhibit better accuracy performances (CP-MLP:
71.1%, TD-MLP: 71.3%) compared to BrainGNN (69.7%),
M-GCN (68.7%), and MMP-GCN (70.5%). On one hand,
BrainGNN and M-GCN were available to handle two modal-
ities, and their performance suffers when dealing with limited
connectome information. On the other hand, although MMP-
GCN befinets from semi-supervised learning on a transductive
graph, it fails to capture inter-modal dependencies effectively.
In contrast, our proposed HC-GNN and TAN are capable
of modeling intersection representations between modalities,
thereby exhibiting better performance. Furthermore, on the
HBN-ADHD dataset, our proposed HC-GNN outperforms the
second-best model, TAN, with a 3% improvement in accuracy.
This is due to the fact that most compared models are designed
for either fMRI connectomes or DTT connectomes and struggle
to generalize well to the learning of both fMRI and EEG.
In contrast, our HC-GNN exhibits better scalability when
learning from various types of brain networks. We suspect that
this is caused by the deep intersection among modalities that
facilitates generating high-order generalizations of matrices for
multi-modal learning.

3) Behavioral phenotype prediction: Furthermore, we con-
ducted behavioral phenotype prediction for attention problem
score, social problem score, and the Strengths and Weaknesses
of ADHD Symptoms and Normal Behavior Scale score. The
quantitative results for these sub-tasks are presented in Table
V, including metrics such as MAE, MSE, and Pearson coeffi-
cient correlation. Overall, we observed low linear correlation
(PCC) ranging from 0.1 to 0.3 between the three phenotypes
and the predicted scores. This can be attributed to the fact that
the fMRI and EEG recordings used in this study are based
on resting-state paradigms, which may not strongly correlate
with specific behavioral phenotypes. Nonetheless, our HC-
GNN consistently improves the linear correlation, achieving
values of around 0.3 across all three sub-tasks. Furthermore,
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TABLE IV
CLASSIFICATION PERFORMANCE ON THE TASK-2: PSYCHIATRIC DISEASE DIAGNOSIS IN TERMS OF ACCURACY (ACC %), SENSITIVITY (SEN %), AND
SPECIFICITY (SPE %) AMONG ALL COMPETITIVE MODELS. * INDICATES THAT THE MODELS ARE TRAINED WITH AND ONLY AVAILABLE FOR TWO

MODALITIES.
NC vs ASD (ABIDE-I) NC vs ADHD (HBN-ADHD)

Model Type Acc 1 Sen 1 Spe 1 ACC 1 Sen 1 Spe 1
SVM ML 69.043.7 71.3+3.3 67.81+4.3 60.01+4.3 60.14+2.9 63.91+16.2
MLP ML 70.1£2.2 68.812.1 71.74+3.8 69.54+2.5 69.94+4.7 72.949.3
CP-MLP Tensor, ML 71.1£3.1 69.444.7 72.34+4.4 729454 73.94£5.7 74.24+11.8
TD-MLP Tensor, ML 713422 74.01+7.5 70.042.1 73.84+54 72.24+6.6 78.24+2.6
BrainNetCNN [26] CNN 72.6+2.5 72.5+3.8 73.6+4.5 69.947.6 67.94+7.7 81.0+7.1
BrainGNN* [28] GNN 69.742.8 66.719.9 72.54+8.3 75.244.0 88.618.5 73.9+7.2
M-GCN* [39] GNN 68.716.8 68.71+6.0 72.944.9 74.244.0 80.042.6 74.7+6.0
HGNN [43] GNN 71.442.6 70.24+4.2 73.04+3.9 73.84+5.8 84.64+10.2 72.145.1
DHGNN [44] GNN 71.943.3 72.14+3.5 72.01+4.4 72.54+4.0 85.648.0 70.21+4.2
Population-GCN [32] semi-GNN 69.94+1.4 79.045.4 68.01+1.8 76.2+10.1 79.31+7.1 73.14£9.8
MMP-GCN [46] semi-GNN 70.54+3.9 71.1+9.6 72.4£7.9 76.745.1 76.1+6.3 75.6+3.7
TAN* [47] Attention 71.7+2.8 71.61+2.7 69.545.3 78.615.0 83.748.1 75.7+5.8
HC-GNN (Ours) Tensor, GNN 73.613.6 76.2+4.4 73.147.2 81.616.2 87.34+4.8 78.7+8.2

TABLE V

CLASSIFICATION PERFORMANCE ON THE TASK-3: BEHAVIRAL PHENOTYPE PREDICTION IN TERMS OF ACCURACY (ACC %), SENSITIVITY (SEN %),
AND SPECIFICITY (SPE %) AMONG ALL COMPETITIVE MODELS. * INDICATES THAT THE MODELS ARE ONLY AVAILABLE FOR TWO-MODALITY DATA
LEARNING AND TRAINED WITH TWO MODALITIES.

HBN-SWAN HBN-SP HBN-AP
Model Type MAE | MSE | PCC 1 MAE | MSE | PCC 1 MAE | MSE | PCC T
SVM ML 0.8042:0.083 1.103£0.237 0.11940.105 | 2.966-20.339 14.903£3.702 0.11520.121 | 4.035£0.444 23.22424.340 0.1212£0.107
MLP ML 0.74840.088 0.99640.208 0.20940.066 | 2.872-20.320 14.833:3.588 0.206:0.100 | 3.907:£0.445 23.11944.253 0.196-£0.064
CP-MLP Tensor, ML | 0.780-£0.093 1.062-20.225 0.146-0.076 | 2.883-£0.349 14.706-:4.211 0.26940.135 | 3.810£0.381 22.5604+3.201 0.286-4-0.083
TD-MLP Tensor, ML | 0.762-20.083 1.033220.210 0.206=-0.104 | 2.878-£0.329 14.688-:3.603 0.2224-0.119 | 3.857-£0.445 23.4074+4.426 0.2334-0.088
BrainNetCNN [26] CNN  [0.76620.085 1.05240.216 0.19240.121 |2.7984:0.333 14.62143.609 0.23740.113 | 3.8264:0.457 22.249-4.334 0.2610.069
BrainGNN [28] GNN  [0.79120.081 1.07440.210 0.1512-0.083 | 3.0284:0.458 16.32244.620 0.1414-0.096 | 4.0544:0.452 23.300-£4.489 0.17740.103
M-GCN [39] GNN  [0.7710.085 1.05040.213 0.228-:0.124 | 2.883:0.340 14.57543.646 0.197-£0.099 [3.80740.414 22.011+4.167 0.286--0.134
HGNN [43] GNN | 0.74640.082 1.003+0.217 0.29540.092 [ 2.7814-0.360 14.5124-4.072 0.2904-0.112 | 3.83640.393 22.53743.362 0.213+0.111
DHGNN [44] GNN  |0.750:£0.078 1.027£0.214 0.241:0.059 | 3.077:£0.318 18.291:£3.677 0.153:£0.100 | 3.94540.720 28.008=£10.799 0.186-:0.100
Population-GCN [32]| semi-GNN | 0.797£0.090 1.0994-0.236 0.2054:0.333 | 2.975-20.366 15.863-4.290 0.1264-0.318 | 4.262--0.712 31.3264-21.460 0.1974-0.288
MMP-GCN [46] | semi-GNN |[0.61720.082 0.9504-0.680 0.1994-0.130 | 2.8674:0.392 14.79944.477 0.16340.224 | 3.9984-0.380 22.790-4.741 0.205+0.199
TAN [47] Attention | 0.60240.148 0.663--0.678 0.188=-0.179 | 3.001£0.424 16.216--2.060 0.216=-0.205 | 3.868£0.356 22.85444.343 0.199--0.146
HC-GNN (Ours) | Tensor, GNN | 0.486-0.039 0.64210.099 0.322:+0.121 | 2.79540.325 14.7824+3.315 0.2812£0.119 | 3.80920.428 22.60744.974 0.282--0.075

our HC-GNN outperforms other methods in predicting SWAN
scores significantly. However, it performs slightly worse than
HGNN in measuring SP and M-GCN in measuring AP.
This is a limitation of our proposed HC-GNN, as it is not
able to consistently achieve the outstanding performances on
regression tasks. This limitation may arise due to the deep
intersection of multiple modalities. When different modalities
exhibit significant variations in prediction, the overall perfor-
mance can be hindered by the underperforming modality, even
with the inclusion of a gating mechanism.

B. Ablation study

In this study, we focus on utilizing the gating mechanism
in our HC-GNN based on a hypercomplex neural network to
effectively model multi-modal tensor graphs. In this section,
we present our ablation studies that aim to investigate the
effectiveness of the gating mechanism, the modeling of HNN,
and the selection of hypercomplex activation functions in the
learning of brain connectomes. These studies provide valuable
insights into the contribution of each component and their
impact on the overall performance of our HC-GNN model.

1) Gating Mechanism: To examine the effectiveness of the
gating mechanism, we conducted a comparison between our
proposed HC-GNN models with and without the gating mech-
anism (referred to as "w Gating” and “w/o Gating” respec-
tively). The results, depicted in Figure 3, showcase the per-
formance in terms of accuracy for Task-1 and Task-2, as well
as the mean absolute error for Task-3. It is evident that across
all three tasks, our HC-GNN with the gating consistently
outperforms the model without the gating, which indicates
that the deep intersection of hypercomplex neural networks
introduces unwanted inductive noise in coupling multi-modal
brain networks. However, it is important to note that the gating
does not always work in every case. Specifically, in Task-
3, the gating does not significantly enhance the prediction of
SWAN and SP. This could be attributed to the fact that the
gating mechanism, learned through the attention paradigm,
may not always facilitate sparsely-distributed representations,
leading to an averaged and potentially uninformative attention
mapping in certain scenarios. Additionally, the intersection
between heterogeneous modalities may have minimal impact
on the behavioral phenotype prediction. Nonetheless, it is
worth highlighting that even in cases where the gating mech-
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anism is not particularly influential, it does not diminish the
overall performance. Based on these observations, we consider
the gating mechanism to be a powerful tool for facilitating
intersection between modalities.

2) Activation Function: Furthermore, we conducted an
evaluation of the hypercomplex activation functions, including
CReLU, zReLU, and modReLU. The comparative results
presented in Table 4 demonstrate that the CReLU function
consistently achieves the best performance across all tasks.
This is reasonable for the hypercomplex neural networks, as
it ensures compliance with the Cauchy-Riemann equations. We
hypothesize that modReLLU and zReL U treat the hypercomplex
inputs as a whole and filter the feature maps accordingly. In
our study, however, the multi-modal inputs still retain their
separate information within distinct imaginary units to some
extent. Consequently, the CReLU function emerges as a more
suitable choice for effectively mapping the heterogeneous
modalities, leveraging the real and imaginary parts separately.

3) Impact of Hypercomplex neural network: In this study,
our approach involves constructing tensor-graphs from multi-
modal data and employing hypercomplex neural networks to
analyze these tensor-graphs. A crucial aspect is to validate the
effectiveness of using hypercomplex neural networks to model
tensor-graphs. To this end, we conducted ablation studies
comparing two approaches: (1) Directly using multi-channel

real-valued graph neural networks, and (2) extracting key
features through Tucker Decomposition and feeding them into
a multi-channel real-valued neural network. The multi-channel
features are flattened before performing message passing on
graphs. Table VI presents the comparative results across all
three tasks, with the accuracy for Task-1 and Task-2, and the
MAE for Task-3. It can be observed that the performances
of the real-valued graph neural networks are on par with
those of BrainNetCNN in Table III, Table IV and Table
V, as both models capture inter-modal dependencies using
multi-channels. However, the use of Tucker Decomposition
consistently improves performance, as it enables the extraction
of key components and treats the multi-modal matrix as
a unified entity. Nonetheless, our proposed HC-GNN con-
sistently outperforms these methods. Notably, in predicting
SWAN, the real-valued neural networks achieve comparable
performance with other GNN models such as BrainNetCNN,
BrainGNN, and M-GCN. In contrast, our proposed hypercom-
plex paradigm further reduces the MAE error from 0.760 to
0.486, showcasing its superior performance.

C. Model generalization ability

To assess the model’s generalization ability due to limited
samples in neuroimaging and EEG datasets, we conducted test-
ing using the ABIDE-II dataset. The results of this evaluation
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TABLE VI
ABLATION STUDIES ON THE HYPERCOMPLEX MODELING OF TENSOR-GRAPHS AMONG ALL THREE TASKS IN TERMS OF ACCURACY (ACC %) AND MEAN
ABSOLUTE ERROR (MAE).

Dataset ADNI ABIDE-I [ HBN
Task ID Task-1 Task-2 Task-3
Task Name NC vs. MCI MCI vs. AD NC vs. AD | NC vs. ASD | NC vs. ADHD SWAN SP AP
Metric ACC 1t ACC 1t ACC 1 ACC 1t ACC 1 MAE | MAE | MAE |
Real-valued 77.5+6.6 74.5+10.5 82.2+10.2 70.5+7.8 743+11.9 0.79240.076  2.885+0.337 3.92140.488
Real-valued, TD 80.01+8.7 80.61+9.3 85.84+13.3 71.0+2.6 76.6+£5.5 0.7804+0.081 2.901+0.363 3.95140.420
Hypercomplex (Ours) | 81.514.1 82.546.3 87.518.4 73.616.6 81.616.2 0.4861+0.039 2.795+0.325 3.809+0.428

are presented in Table VII, which includes the average and
deviation results obtained from the 10-fold models trained on
the ABIDE-I dataset. Comparing the results of the ABIDE-
I dataset from Table IV, we can observe that the second-best
model in the ABIDE-I dataset, BrainNetCNN, performs poorly
in the ABIDE-II dataset. This indicates that BrainNetCNN
has limited generalization ability for predicting ASD with
different datasets. On the other hand, TAN, which utilizes self-
attention to model multi-modal representations, demonstrates
better generalization ability. This finding shows evidence that
Transformer-like architecture is able to generalize to various
fields. Compared with these models, our proposed HC-GNN
achieves the best generalizability among all the models, out-
performing the second best model with 1.6% improvements.

D. Model Interpretability

To better understand which brain regions contribute most
to the classification of the brain disorders, we analyzed the
saliency maps to identify the brain regions that contribute most
significantly. Figure 5 displays the F-statistic values of the
regions that were found to be statistically significant (with a
p-value of less than 0.05) during the group-wise comparison.

In the comparison between individuals with NC and those
with MCI, three key regions were identified with significant
differences. These regions include the left temporal lobe, the
left parietal cortex, and the right prefrontal cortex (PFC) of
the Default Mode Network (DMN). Besides the temporal
lobe, in the distinction between AD and MCI, the right
precentral ventral cortex of the Dorsal Attention Network
(DAN) was also found to be discriminative. Additionally, in
the comparison between NC and AD, significant differences
were observed in the cingulate regions of both sides of
the Frontoparietal Network (FN), the left temporal lobe of
the DMN, and the left prefrontal cortex of the DMN. The
temporal lobes play a crucial role in declarative memory and
recognition. The posterior cingulate cortex (PCC) and medial
temporal cortex are anatomically and functionally connected,
and amyloid deposition in these regions contributes to synaptic
dysfunction and eventual neuronal loss in the hippocampus and
surrounding cortical structures, leading to memory impairment
[73], [74]. Furthermore, AD is a neurodegenerative condition
that affects heteromodal association regions, such as PFC.
Dysfunction in PFC, which is involved in semantic memory
processing, has been observed in AD patients, suggesting
compromised semantic memory in this population [75], [76].

Our findings align with these studies and provide additional
evidence supporting their conclusions.

TABLE VII
MODEL GENERALIZABILITY OF CLASSIFICATION PERFORMANCE ON
INDEPENDENT TESTING DATASET, ABIDE-II, IN TERMS OF ACCURACY
(ACC %), SENSITIVITY (SEN %), AND SPECIFICITY (SPE %) AMONG ALL
COMPETITIVE MODELS. * INDICATES THAT THE MODELS ARE TRAINED
WITH AND ONLY AVAILABLE FOR TWO MODALITIES.

NC vs ASD (ABIDE-II)

Model Type Acc T Sen 1 Spe 1
SVM ML 66.1+0.4 63.7£0.7 67.840.3
MLP ML 67.3+0.3 66.3£1.5 68.1t1.4
CP-MLP Tensor, MLL 64.1£0.5 59.1£0.9 67.240.9
TD-MLP Tensor, ML 65.1£+0.4 65.4+0.8 65.34+0.4
BrainNetCNN [26] CNN 66.2+0.7 66.0£1.6 66.5+1.5
BrainGNN* [28] GNN 63.240.6 50.1£34 74.14£5.6
M-GCN* [39] GNN 64.840.1 64.8+£2.2 64.840.1
HGNN [43] GNN 65.4+0.7 63.94+1.9 66.5+1.4
DHGNN [44] GNN 64.6+0.7 61.8+0.8 66.3+1.1
Population-GCN [32] semi-GNN 66.0+0.3 66.2+4.0 66.31+0.4
MMP-GCN [46] semi-GNN 66.3+0.2 68.61+0.4 59.640.2
TAN* [47] Transformer 67.14+0.2 66.34+ 0.7 68.440.1
HC-GNN (Ours) Tensor, GNN | 68.710.5 66.94+2.7 68.6+1.7

Furthermore, significant differences were observed in PFC
of the Default Mode Network and PCC of the Frontoparietal
Network in the comparison between individuals with NC and
ASD. And the right middle temporal cortex, precuneus, and
left superior temporal cortex are key regions in the comparison
between NC and ADHD. These regions predominantly belong
to the default mode network, which is involved in adaptive
responses in both ASD and ADHD [77]-[79]. Our findings in
the prefrontal and temporal cortex coincides with these studies.
Besides, previous studies suggest that altered precuneus con-
nectivity is involved in the neuropathology of ADHD [80],
[81], which is consistent with our results.

VI. DISCUSSION

In this study, we observed that the classification results on
the ADNI dataset exhibit relatively large deviations, whereas
the deviations are smaller in the ABIDE-I dataset. This differ-
ence can be attributed to the larger size of the cohort in the
ABIDE-I dataset. It’s worth noting that the ADNI dataset com-
prises participants with both fMRI and DTI images, which are
challenging to collect. Although the integration of functional
and structural connectomes has greatly facilitated computer-
aided diagnosis of neurodegenerative diseases, it comes with
a high cost in terms of data acquisition. One approach to
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d) NC vs. ASD

e) NC vs. ADHD

Fig. 5. Group-wise comparison on (a) NC vs. MCI, (b) MCI vs. AD, (c) NC vs. AD, (d) NC vs. ASD, and (e) NC vs. ADHD. Statistical results (F-statistic
values are shown in blue with the cutoff ranging from 3 to 8) on the saliency maps with only significant regions (adjusted p-value < 0.05) are displayed.

mitigate this challenge is to utilize other types of modalities.
The results from HBN-ADHD demonstrate that incorporating
resting-state fMRI and EEG data is available for diagnosing
ADHD with high accuracy. EEG data is more easily accessible
compared to MRI scans. Furthermore, our HC-GNN outper-
forms previous studies [38], [82] (around 71% accuracy) in
terms of classification results for distinguishing between NC
and ADHD. While these previous studies primarily rely on
fMRI, which limits their performance, our HC-GNN achieves
an accuracy of 81.6%. In conclusion, our HC-GNN provides
novel insights in modelling various types of brain networks in
a promising performance.

In addition to its strengths, our proposed HC-GNN also
has certain limitations. On one hand, the deep intersection
operations involved in hypercomplex neural networks are time-
consuming, even though they do reduce the number of param-
eters compared to standard convolutional layers in real-world
problems. While this issue is acceptable for brain network
studies given their relatively small sample sizes, it remains a
time-consuming process for other multi-modal cases such as
images and language texts. On the other hand, as discussed
in the results, the performance of HC-GNN heavily relies on
the consistency of performances among various modalities.
If there are significant variations in prediction performances
across different modalities, the learning performance of the
multi-modal model can be hindered by the underperforming
modality. In our future work, we plan to explore strategies
to optimize the training process and optimize the network in

other multi-modal applications.

VII. CONCLUSION

In this study, we propose to implement hypercomplex neural
network for modeling the multi-modal tensor-graphs. And
we leverage the gating and dynamic graph mechanisms for
the dynamic coupling of multi-modal dependencies. Through
extensive experiments, we demonstrate the significant potential
of our HC-GNN in modeling multi-modal brain networks,
showcasing strong generalizability and scalability. We eval-
vated our approach using various types of brain networks,
highlighting its superior performance compared to state-of-
the-art methods in brain disease diagnosis and promising
phenotype estimation results. Our HC-GNN provides a novel
way of coupling multiple types of brain networks and facil-
itates the deep intersection of multi-modal connectome for
representation learning.
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