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Abstract—Medical image segmentation annotation suffers from
annotator variation due to the inherent differences in annotators’
expertise and the inherent blurriness of medical images. In
practice, using opinions from multiple annotators can effectively
reduce the impact of such annotator-related biases. Meanwhile, it
is common practice in deep learning to fuse multiple annotations
through methods such as majority voting, but these methods
ignore the rich information of annotator preferences ingrained
in the original multi-annotator annotations. To address this
issue, we propose a modeling annotator variation and annotator
preference (AVAP) framework for multiple annotations medical
image segmentation, which consists of three parts. First, the widely
used encoder-decoder backbone network use to extract feature
maps of the image. Second, an annotator variation modeling
(AVM) module is devised to estimate the annotation variation
among multiple annotators by modeling multi-annotations as a
multi-class segmentation problem. Third, an annotator preference
modeling (APM) module estimate each annotator’s preference-
involved segmentation by annotator encoding and dynamic filter
learning. The experiment on the RIGA benchmark with multiple
annotations shows that our AVAP framework outperforms a range
of state-of-the-art (SOTA) multiple annotations segmentation
methods. Further, we are the first to introduce dynamic filter
learning into the annotator preference modeling.

Index Terms—medical image segmentation, multi-annotations,
annotator preference, dynamic filter learning

I. INTRODUCTION

Segmentation and quantitative evaluation of regions of
interest in medical images are of great importance in formu-
lating therapeutic strategies, monitoring the disease’s progress,
and predicting the prognosis of patients [1], [2]. Data-driven
methods such as deep convolution neural networks (DCNN)
have recently achieved state-of-the-art performance in medical
image segmentation [3]–[5]. As we all know, one of the basic
facts contributing to this success relies on supervised learning
of dense pixel annotations of images. Despite the success
of the aforementioned CNN-based methods, medical image
segmentation annotation suffers from annotator variation due to
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Fig. 1: An example of medical image annotation by six
annotators (A1-6) on the RIGA benchmark.

TABLE I: Examining the grading consistency of individual
annotators on the RIGA test set (measured by Dice (Ddisc (%),
Dcup(%))). M1-6 denote Res-U-Net supervised by individual
annotator’s annotation. The A1-6 indicates the predictions of
each model are evaluated against each annotator’s annotation.

A1 A2 A3 A4 A5 A6
M1 95.9,84.4 94.8,81.2 95.1,79.5 95.9,79.1 95.6,79.4 95.9,75.8
M2 95.3,84.0 96.1,84.7 96.1,80.8 96.1,81.8 96.5,80.3 96.3,77.4
M3 95.4,82.5 94.9,81.1 96.8,83.6 95.8,80.3 96.3,81.1 96.2,76.3
M4 95.1,80.3 95.6,82.1 96.3,77.4 96.4,87.9 96.1,72.7 96.4,68.7
M5 95.1,83.6 94.9,80.0 96.0,81.9 96.3,75.5 96.8,84.0 96.1,79.4
M6 95.5,81.4 95.6,80.0 96.3,78.9 96.2,74.5 96.4,82.3 97.1,80.2

the inherent differences in annotators’ expertise and the inherent
blurriness of medical images [6]. For example, Suetens et al.
[7] showed that the three trained annotators (two radiologists
and one radiotherapist) delineated a lesion of the liver in an
abdominal CT image twice with an interval of about one week,
resulting in the variation of delineated areas up to 10% per
observer and more than 20% between observers.

In practice, we tend to generate multiple plausible hypotheses
when faced a situation that we are not sure about. Especially
in practical clinical applications, medical images are often
annotated by multiple experts to mitigate the subjective bias
of a particular expert due to factors such as level of expertise
or possible omission of subtle symptoms [10], [11]. It is worth
noting that the annotations provided by multiple annotators are
reasonable, albeit with different preferences [9]. For example,
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annotators who advocate aggressive treatment often delineate
a slightly larger lesion area than the area marked by others.
To quantitatively and qualitatively demonstrate the annotator’s
preference, one preliminary experiments are conducted on the
RIGA benchmark [16]. And six glaucoma experts from different
organizations labeled the optic cup and disc contour masks
manually for the RIGA benchmark. We train the Res-U-Net
using individual annotator’s annotations, and obtain six different
models (named M1-6) corresponding to six annotators (named
A1-6). Table I lists the Dice coefficient of each model for six
different annotations. It is obvious that all the models have the
optimal performance when trained and evaluated with the same
annotator’s annotations but much worse when evaluated by
others’ annotations. Therefore, a single annotator has a specific
and consistent scoring pattern, called annotator preference [28].

It is a common practice in deep learning to fuse multiple
annotations (such as majority voting [17], label fusion [18],
[20], [34], or label sampling [19]) to reduce multiple annotation
variation, but these methods overlook the rich information of
annotators’ preferences ingrained in the raw multi-annotator
annotations. Particularly, converting the multiple annotations
of each training image into a proxy ground truth may lead the
segmentation result to be neither fish nor fowl [30]. Currently,
there are few studies related to annotator preference modeling
in multiple annotations medical image segmentation. The
most direct method is to train multiple base models for the
annotations of a single annotator, but this method is more
complicated and does not jointly utilize the information of
multiple annotations. In addition, the complexity of existing
models based on multi-head network structure [17], [30] will
increase with the number of annotators.

To this end, we propose a framework for modeling annotator
variation and annotator preference (AVAP) for multiple anno-
tations medical image segmentation. Unlike the fuse method
that reduces the impact of annotation variation, AVAP instead
advocates modeling annotator preferences separately from
annotator variation. So AVAP not only produces calibrated
image segmentation (output of AVM), but also mimics each
annotator and segments medical images with annotator pref-
erence (output of APM). AVAP consists of three parts: First,
the widely used encoder-decoder backbone is used to extract
feature maps of the image. The extracted feature maps are used
for subsequent annotator preference and annotator variation
modeling. Second, an annotator variation modeling (AVM)
module is devised to estimated the annotation variation among
multiple annotators by modeling multi-annotations as multi-
class segmentation problem. It should be noted that we achieved
the first best result on the MICCAI QUBIQ 2021 challenge
[8], [21] leaderboards by modeling multi-annotation variation
as a multi-class segmentation problem. Third, an annotator
preference modeling (APM) module estimate each annotator’s
preference-involved segmentation by annotator encoding and
dynamic filter learning [22]. The convolution kernel parameters
in the dynamic network are adaptively generated based on
the input feature maps and annotator coding. Specifically, the
annotator specific prior is fed to the controller to guide the

generation of dynamic network convolution kernel parameters
for each annotator. In this design, compared with the multi-head
network, the complexity caused by the number of annotators
can be ignored. The main contributions of this paper are as
follows:

1) We propose a modeling annotator variation and annotator
preference (AVAP) framework for multiple annotations
medical image segmentation. AVAP not only produces
calibrated image segmentation (output of AVM), but also
mimics each annotator and segments medical images
with annotator preference (output of APM).

2) Different from existing state-of-the-art methods, AVAP
adopts a completely different network structure and
makes a more novel exploration. AVAP estimated the
annotation variation by modeling multi-annotations as a
multi-class segmentation problem. We used this method
to achieve the first best result on the MICCAI QUBIQ
2021 challenge leaderboards. Further, we are the first
to introduce dynamic filter learning into the annotator
preference modeling.

3) The experiment on the RIGA benchmark shows AVAP
outperforms a range of state-of-the-art multiple annota-
tions medical image segmentation methods.

II. RELATED WORK
A. Medical Image Segmentation

With the advancement of CNNs, an increasing number of
deep learning architectures have been proposed for medical
image segmentation [12], [13]. Particularly, U-Net [4] is one of
the most commonly used convolutional network structures in
medical image segmentation. By adopting an encoder-decoder
network structure and skip connection, it can combine features
of the different decoding layers with features of the different
encoding layers. Oktay et al. [23] introduced the attention
mechanism [14] into U-Net, which can suppress irrelevant areas
in the input image and highlight the salient features of specific
local areas. Gu et al. [24] integrated dense atrous convolution
block [15] and residual multi-kernel pooling to U-Net structure
to capture high-level features with context information. Zhou
et al. [25] proposed a new segmentation architecture based on
nested and dense skip connections to reduces the gap between
the feature maps of the encoding and decoding sub-networks.
A common practice adopted by the above methods typically
requires unique ground-truth annotations, each pairing with
one of the input images to train the deep learning models.

B. Medical Image Segmentation with Multiple Annotations

A few methods have been proposed to address the issue
of multiple annotations in medical image segmentation. Here
we summarize these methods roughly into two categories, as
follows:

1) Fusing multiple annotations: This kind of method is a
common practice to take majority voting [17], label fusion [18],
[20], [34], or label sampling [19] to construct training examples
by retaining unique ground-truth labels for each of the training
instances. Jensen et al. [19] propose a better calibrated model is
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Fig. 2: Architecture of AVAP framework, which consists of three parts. First, the backbone network is used to extract feature
maps of the image. Second, an annotator variation modeling (AVM) module is devised to estimate the annotation variation
among multiple annotators by modeling multi-annotations as multi-class segmentation problem. Third, an annotator preference
modeling (APM) module estimate each annotator’s preference-involved segmentation by dynamic filter learning.

obtained when training with a label sampling scheme that takes
advantage of inter-annotator variability during training. Guan
et al. [17] predicted the gradings of each annotator individually
and learned the corresponding weights for final prediction.
Mirikharaji et al. [29] propose a spatially adaptive reweight-
ing approach to treat multiple noisy pixel-level annotations
commensurately in the loss function. Although these strategies
are simple and easy to implement, they completely ignore the
information of the preference of annotators.

2) Modeling annotator preference: Currently, there are few
studies related to annotator preference modeling in multiple
annotations medical image segmentation. The most direct
method is to train multiple base models for the annotations of
a single annotator, but this method is more complicated and
does not jointly utilize the information of multiple annotations.
Ji et al. [28] proposed MRNet framework to incorporate
the multi-rater (dis-)agreement cues and generate calibrated
model predictions that better reflected the underlying agreement
among multiple experts. Liao et al. [30] propose the PADL
framework based on multi-head network structure, which treats
the annotation bias as the combination of annotator’s preference
and stochastic errors. However, the complexity of multiple-
head/branch [17], [31] architecture will increase with the
number of annotators. Different from above works, AVAP
adopts a completely different network structure and makes a

more novel exploration.

C. Dynamic Filter Learning

In a traditional convolutional layer, the learned filters stay
fixed after training. In contrast, the filters of dynamic filter
learning are generated dynamically conditioned on an input
[26], [32]. Chen et al. [22] dynamically aggregate multiple
convolution kernels according to the attention of each input
via dynamic convolution to improve the representation ability.
Zhang et al. [33] uses dynamic filter learning to address the
partially labelling issue for multi-organ and tumor segmentation.
Tian et al. [35] propose a simple yet effective instance
segmentation framework by using instance-wise ROIs as inputs
to a network of fixed weights. The above methods show
that dynamic filter learning can increase the flexibility of the
network and enhance the representation ability. In this paper,
we employ the dynamic filter learning to model annotator
preference. And the convolution kernel parameters in the
dynamic network are adaptively generated based on the input
feature maps and annotator coding.

III. METHOD

A. Overall Framework

Let N medical images annotated by M annotators be denoted
by D = {xi, y1i , y2i , ..., yMi }Ni=1. xi represents the i-th image,
and ymi is the annotation given by the m-th annotator. Our
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goal is to train a segmentation model on the multi-annotations
data set so that the model can generate calibrated segmentation
[27] and mimic each annotator’s preference.

Figure 2 (a) shows that the AVAP framework consists of
an encoder-decoder backbone, an AVM model, and an APM
model. First, the backbone network extracts the feature maps
Fimg of the input image. The extracted feature maps are used
for subsequent AVM models and APM models. Based on
Fimg , the AVM model estimates a calibrated segmentation map,
which approximates the mean voting of M annotations. AVM
model multi-annotations as multi-class segmentation problem.
We evaluate the calibrated predictions of the AVM using the
soft dice coefficient metric. Figure 2 (c) shows how to convert
multiple binary annotations into single multi-class masks. Based
on Fimg , the APM module estimate each annotator’s preference-
involved segmentation by annotator encoding and dynamic filter
learning. The convolution kernel parameters in the dynamic
network are adaptively generated by the controller according
to the input feature maps and annotator specific prior coding.

B. Encoder-decoder Backbone

AVAP adopts the widely used U-Net architecture with
a ResNet34 [37] pre-training from ImageNet [38] as the
encoder part (Corresponding to the eight coding layers of the
ResNet34). Symmetrically, the decoder consists of five blocks
that progressively upsample the feature maps to restore their
resolution. The skip connections were also employed between
down-convolutional layers and up-convolutional layers. In each
of the first four blocks, the feature maps are upsampled by a
transposed convolutional layer with stride 2. Then, the feature
maps are processed by a convolutional layer, concatenated
with feature maps from the encoder, and fed to a ReLU layer
and a batch normalization layer. The last decoder block only
upsamples the image features to the original image size using
a transposed convolutional layer with stride 2 [30]. As a result,
the backbone network generates feature maps Fimg of the same
size for each input image, shown as follows, which contain
rich semantic information.

Fimg = FB(x; θB), (1)

where θB represent the parameters in the backbone network
FB .

C. Annotator Variation Modeling (AVM) Module

The AVM module is devised to estimate the calibrated
predictions among different annotators by modeling multi-
annotations as a multi-class segmentation problem. As shown
in Figure 2 (b), AVM contains two branches, corresponding
to the Cup and Disc in the RIGA dataset, respectively. Each
branch contains three blocks. In each of the first two blocks, two
convolutional layers are repeatedly employed, each followed
by a ReLU layer and a batch normalization layer. At the third
blocks, one 1× 1 convolutional layers is used to map feature
maps to seven classes.

Figure 2 (c) shows how to convert multiple binary an-
notations into single multi-class masks. Taking the RIGA

benchmark as an example, the six masks will be converted to
two multi-classes (including seven class) masks. This method
is simple and yields well-calibrated predictions. Taking the cup
category as an example, Figure 2 (c) shows the aggregation of
six binary masks into a single multi-class mask M(xi) as

M(xi) =

M∑
m=1

ymi , 0 6M(xi) 6M (2)

where M denotes the number of annotators. yi is the
binary annotation of xi annotated by i-th annotator. Therefore,
the value of the aggregated multi-class mask M is between
0 and the number of annotators. The value of each pixel
of M represents the number of annotators for which it is
marked as the target pixel. By aggregating multiple annotation
binary masks, we modeling multi-annotations as multi-class
segmentation problem with M+1 class (including background).
The class m marks the agreement of exactly m annotators,
for m ∈ {0, 1, ...,M}. Figure 2 (b) shows the two branches
outputs the calibrated predictions based on Fimg as

Pdisc = Fdisc(Fimg; θdisc)

Pcup = Fcup(Fimg; θcup)
(3)

where θdisc and θcup represent the parameters in the branche
Fdisc and branche Fcup, respectively. The output mask P thus
represents the pixels that would be marked by M annotators.
Further, dividing the output mask values with the number of
annotators M results in values on the interval [0, 1], which can
also be interpreted as annotation or segmentation (un)certainty
and reflects the uncertainty of the expert annotators [36].

D. Annotator Preference Modeling (APM) Module

1) Annotator encoding: Taking the RIGA benchmark as an
example, each annotation corresponds to a fixed annotator. This
information is a critical prior that tells the model with which
annotator it is dealing and what kind of preferred segmentation
results should it produce. For instance, given an input image,
AVAP is expected to be specialized for a certain annotator,
i.e., predicting the segmentation result with this annotator’s
preference. In the APM module, the expertise level cues of
multiple annotators are formed as a normalized annotators
vector V ∈ R1×1×M , shown as follows.

Vm =

{
0 if m 6= i

1 otherwise
m = 1, 2, ...,M (4)

Where M represents the total number of annotators. i
corresponds to a specific annotator. It is fed to the APM module
for annotator-awareness. Vm = 1 means that the annotation of
m-th annotation is available for the current input x [33].

2) Dynamic filter: In a traditional convolutional layer, the
learned filters stay fixed after training. Therefore, a network
optimized for one task is necessarily less optimized for other
tasks. So it is difficult to use a single network to perform the
task of preference segmentation for multiple annotators. In
contrast, the filters of dynamic filter learning are generated
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dynamically conditioned on an input [32]. In this paper, we
introduce dynamic filter learning to modeling annotator prefer-
ence, which is specialized to segment a particular annotator. As
in the paper [33], a single convolutional layer is used as a task-
specific controller ϕ(). The input feature maps F is aggregated
via global average pooling (GAP) and concatenated with the
annotator encoding vector Vm as the input of ϕ(). Then, the
kernel parameters w are generated dynamically conditioned
not only on the assigned annotator encoding Vm but also on
the input feature maps F itself, expressed as follows

wm = ϕ(GAP (F )||Vm; θϕ) (5)

where θϕ represents the controller parameters, and || repre-
sents the concatenation operation.

Figure 2 (d) shows the APM contains three dynamic
convolutional layers. The kernel parameters in three layers,
denoted by ωm

k = {ωm
1 , ω

m
2 , ω

m
3 }, are dynamically generated

by the controller ϕ() according to the input feature maps F
and annotator encoding vector Vm. In each of the first two
dynamic convolutional layers is with 3× 3× 3 kernels. The
last dynamic convolutional layer is with 1 × 1 × 1 kernels.
The annotator’s preference predictions of image with regard to
m-th annotator is computed as

Pm = BN(Relu(BN(Relu(Fimg ∗ ωm
1 )) ∗ ωm

2 )) ∗ ωm
3 (6)

where ∗ represents the convolution, and Pm represents the
predictions of m-th annotator’s preference.

E. Training and Testing

1) Training: After comparative experiments, this paper
adopts a special training strategy, which is divided into two
steps. First, we jointly train the backbone network and AVM
module. Then the backbone network and AVM module are
frozen and the APM module is trained. Furthermore, during
APM training, we randomly select different annotators’ codes
for training. We jointly use the Dice loss and Cross-entropy
loss as the objective for two steps. The loss function Ltotal is
formulated as

Ltotal = LDice + LCE (7)

LDice = 1−
2
∑I

i=1 piyi∑I
i=1 pi + yi + ε

(8)

LCE = − 1

N

N∑
i=1

K∑
c=1

yiclog(pic) (9)

where pi and yi represent the prediction and ground truth
of i-th voxel, N is the number of all voxels. K is the number
of categories.

2) Testing: During inference, the proposed AVAP is flexible
to m segmentation annotations. Given a test image, the feature
maps Fimg is extracted from the backbone network. Based
on Fimg , the AVM model estimates a calibrated segmentation,
which approximates the mean voting of M annotations. Based
on Fimg , the APM module estimate each annotator’s preference-
involved segmentation by annotator encoding and dynamic filter
learning. In addition, if annotations are all required, AVAP is
able to efficiently segment all of m annotations in turn.

IV. EXPERIMENTS AND RESULTS

A. Datasets

RIGA: The RIGA benchmark [21] is a publicly available
dataset for retinal cup and disc segmentation, which contains in
total of 750 color fundus images from three sources, including
460 images from MESSIDOR, 195 images from BinRushed and
95 images from Magrabia. Six glaucoma experts from different
organizations labeled the optic cup/disc contours manually in
each image. We followed the data split scheme used in [28],
[30], using 655 samples from BinRushed and MESSIDOR for
training and 95 samples from Magrabia for test.

B. Experimental Setup

1) Implementation Details: In this study, all the networks
train using Pytorch using NVIDIA TESLA V-100 (Pascal)
GPUs with 32 GB memory. All images were normalized via
subtracting the mean and dividing by the standard deviation on
a pixel-by-pixel basis. The mean and standard deviation were
counted on training cases. We optimized our methods with the
Adam optimizer with the learning rate 1e-4 and the weight
decay 1e-5. The batch size is set to 8. And all training and test
images are uniformly resized to the dimension of 256× 256
pixels.

2) Evaluation Metric: The output of the AVM is to produce
probability map that can reflect the underlying inter-rater
agreement/disagreement, i.e., calibrated predictions, for medical
image segmentation. In order to better evaluate the calibrated
model predictions, we use soft dice coefficient metric through
multiple threshold levels, set as (0.1, 0.3, 0.5, 0.7, 0.9) in this
paper, instead of using a single threshold (e.g., 0.5) [28]. At
each threshold level, the threshold is applied to the predicted
probability map and mean voting of annotations to generate
hard Dice. The Dice scores obtained at multiple thresholds
are averaged and then we obtain the soft metrics, denoted as
Ds. Based on Soft Dice, there are two performance metrics,
namely ‘Average’ and ‘Mean Voting’. ‘Mean Voting’ is the
Soft Dice between the predicted calibrated segmentation and
the mean voting annotations. Higher ‘Mean Voting’ represents
better performance on modeling calibrated segmentation. The
annotator-specific predictions are evaluated against each anno-
tator’s delineations, and the average Soft Dice is denoted as
‘Average’. Higher ‘Average’ represents better performance on
miming each annotator [30].
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TABLE II: Quantitative results with different methods on the RIGA test set. Here, we use soft Dice metrics (Ds
disc (%),

Ds
cup(%)) to evaluate calibrated segmenttaion (corresponding to ’Mean Voting’). The predictions of each model are evaluated

against each annotator’s annotation (Ddisc (%), Dcup(%)) and the average performance for the six annotations (corresponding
to ’Average’) is also given. The best results in each column are highlighted.

Methods A1 A2 A3 A4 A5 A6 Average Mean Voting
M1 95.93, 84.39 94.76, 81.15 95.06, 79.52 95.90, 79.05 95.62, 79.40 95.96, 75.80 95.56, 79.89 96.02, 81.72
M2 95.32, 84.02 96.06, 84.67 96.13, 80.79 96.14, 81.79 96.51, 80.33 96.32, 77.39 96.08, 81.49 95.80, 82.42
M3 95.43, 82.52 94.86, 81.09 96.79, 83.55 95.82, 80.28 96.27, 81.07 96.19, 76.31 95.89, 80.80 95.36, 81.20
M4 95.14, 80.31 95.63, 82.08 96.33, 77.42 96.42, 87.89 96.10, 72.70 96.42, 68.69 96.01, 78.18 96.11, 79.24
M5 95.06, 83.62 94.92, 79.99 96.00, 81.88 96.27, 75.47 96.75, 83.97 96.07, 79.40 95.85, 80.72 95.88, 80.25
M6 95.50, 81.39 95.64, 80.00 96.25, 78.92 96.19, 74.47 96.38, 82.32 97.09, 80.22 96.18, 79.55 96.03, 79.63

MH-UNet 96.03, 85.30 95.98, 85.69 96.90, 83.99 96.68, 84.86 97.12, 83.06 96.78, 77.48 96.58, 83.40 96.91, 84.35
MV-UNet 95.06, 84.33 95.27, 82.57 96.05, 79.35 95.48, 80.29 96.26, 81.05 95.33, 78.11 95.57, 80.95 97.35, 85.74
LS-UNet 95.25, 83.43 94.71, 80.10 95.92, 81.41 96.30, 78.57 96.13, 82.19 96.04, 79.15 95.73, 80.81 97.21, 81.37

CM-Net [30] 96.29, 84.59 95.46, 81.44 96.60, 81.84 96.90, 87.52 96.86, 82.39 96.93, 78.82 96.51, 82.77 96.64, 81.96
MR-Net [28] 95.35, 81.77 94.81, 81.18 95.80, 79.23 95.96, 84.46 95.90, 79.04 95.76, 76.20 95.60, 80.31 97.55, 87.20
PADL [30] 96.40, 85.22 95.60, 85.15 96.64, 82.76 96.82, 88.79 96.78, 83.45 96.87, 79.72 96.52, 84.18 97.65, 87.75

AVAP 96.40, 85.66 96.24, 85.61 96.97, 84.21 97.12, 89.00 96.92, 84.15 97.08, 82.15 96.78, 85.13 97.88, 87.90

Fig. 3: Visualization of calibrated segmentation maps predicted by AVM and six annotator preference segmentations by APM.
A1− 6 corresponds to the annotations of six different annotators. The top left corner of the prediction results in red shows the
hard Dice (Ddisc (%), Dcup(%)) against each annotator’s annotation. The top left corner of the prediction results in orange
shows the soft Dice (Ds

disc (%), Ds
cup(%)) against mean voting annotation.

C. Comparison Results

We conduct quantitative experiments to compare our AVAP
with a range of multiple annotations segmentation methods
on the RIGA test set in Table II. Here, M1-M6 refer to the
Res-U-Net base model trained with the corresponding labels
graded by annotators 1-6 (A1-6), respectively; A variant of
Res-U-Net with multiple segmentation heads, each used to
mimic annotations from a specific annotator defined as MH-
UNet; A Res-U-Net trained with the mean voting of annotations
is defined as MV-UNet; A Res-U-Net trained with randomly
selected annotation from the candidate annotations of each
sample is defined as LS-UNet [19]; CM-Net is an annotator

bias disentangling method that uses a confusion matrix to model
human errors [39]. MR-Net [28] and PADL [30] are existing
state-of-the-art methods for modeling the multi-annotators (dis-
)agreement.

Table II shows that M1− 6 have the optimal performance
when trained and evaluated with the same annotator’s annota-
tions but much worse when evaluated by others’ annotations.
The AVAP consistently achieves superior performance under
most conditions, reflecting that AVAP not only produces cali-
brated image segmentation but also mimics each annotator and
segment medical images with annotator preference. Meanwhile,
since the annotator-related bias is considered, MR-Net, MH-
UNet, and PADL perform well no matter being evaluated
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TABLE III: Ablation study on the effect of pre-training on
ImageNet.

Model Average Mean Voting
AVAP w/o ImageNet pre-training 96.31, 82.97 97.64, 85.16
AVAP w ImageNet pre-training 96.78, 85.13 97.88, 87.90

TABLE IV: Ablation study on the effect of different conditions
(input feature maps, annotator encoding) during the dynamic
filter generation.

Task coding Feature coding Average Mean Voting√
× 96.58, 84.30 97.88, 87.83

×
√

96.18, 82.34 97.88, 87.83√ √
96.78, 85.13 97.88, 87.90

against the mean voting or individual annotation.
Compared with MR-Net and PADL state-of-the-art methods,

AVAP has a good improvement in modeling annotator pref-
erence on cup segmentation. In addition, the accuracy of the
disc has reached a high accuracy, even the base model (M1-6)
can achieve high accuracy. So the corresponding improvement
is relatively small. It can also be seen from Figure 1 that the
annotations difference between multiple annotators of the disc
is small. And AVAP obtains the best-calibrated segmentation
results on both disc and cup. Compared with MR-Net and
PADL state-of-the-art (SOTA) methods, AVM only adopts
a very simple network structure. This further illustrates the
effectiveness of modeling multi-annotations as a multi-class
segmentation problem. In future work, we can extend the AVM
module to introduce better structures or loss functions to further
improve the performance of AVM.

We visualized the segmentation maps predicted by AVAP
of two cases from the RIGA dataset in Figure 3. It shows
that AVM can produce more accurate calibrated segmentation.
And the APM can generate segmentation results with different
annotator preferences.

D. Ablation study

In this section, we conducted ablation studies on the RIGA
dataset to investigate the effectiveness of the detailed design
of the AVAP. We use the ‘Average’ and ‘Mean Voting’ as two
evaluation indicators for a fair comparison.

1) Pre-training On ImageNet: In deep learning, feature
representations learned on a pre-training task can transfer useful
information to target tasks [40]. And AVAP adopts the widely
used U-Net architecture with a ResNet34 pre-training from
ImageNet as the encoder part (Corresponding to the eight
coding layers of the network). To evaluate the contributions of
pre-training on ImageNet, we compared the proposed AVAP
framework with its variants that not use pretrained from
ImageNet, i.e., ‘AVAP w ImageNet pre-training’ and ‘AVAP
w/o ImageNet pre-training’. As shown in Table III, the ‘AVAP
w ImageNet pre-training’ methods achieves the best results.
And pre-training on ImageNet has a greater impact on cup
segmentation and less impact on disc.

2) Annotator coding & Input Feature Maps in APM: The
dynamic filters generated in AVAP are conditioned not only

TABLE V: Ablation study on the effect of different training
strategy.

Methods Average Mean Voting
Average weight 96.31, 83.36 97.85, 87.54

Weight (0.2, 0.2, 0.6) 96.68, 81.66 97.65, 87.42
Weight (0.4, 0.4, 0.2) 96.59, 83.50 97.78, 86.93

Our (two-step) 96.78, 85.13 97.88, 87.90

on the input feature maps but also on the assigned annotator.
Here we analyze the effect of input feature maps and annotator
encoding on model performance. As shown in Table IV, the
annotator encoding plays a much more important role than
input feature maps in dynamic filer generation. It reveals that
annotator encoding is a critical prior that tells the model
with which annotator it is dealing and what kind of preferred
segmentation results should it produce. Since AVAP adopts
two-step training, there is no difference in ’Mean Voting’
performance between these groups of comparative experiments.
And experiments show a greater impact on cup segmentation
and less impact on the disc.

3) Training strategy: We adopt a two-step training strategy.
Another method that comes to mind directly is to train the
model by weighting the loss functions corresponding to the two
parts of the AVM and APM into one loss function. Here, we
compare the performance of the models under several different
sets of weights. As shown in Table V, the two-step approach
achieves the best results. Different training strategies have a
greater impact on ’Average’ metric. And experiments show a
greater impact on cup segmentation and less impact on disc.

V. CONCLUSION

In this paper, we propose a modeling annotator variation
and annotator preference (AVAP) framework for multiple
annotations medical image segmentation. It consists of three
parts: backbone network, AVM, and APM. AVAP not only
produces calibrated image segmentation (output of AVM), but
also mimics each annotator and segments medical images with
annotator preference (output of APM). AVM model multi-
annotations as a multi-class segmentation problem. And we
used this method to achieve the first best result on the MICCAI
QUBIQ 2021 challenge leaderboards. Further, we are the first to
introduce dynamic filter learning into the annotator preference
modeling. In this design, compared with the multi-head network,
the complexity increase caused by the number of annotators
can be ignored. The experiment on the RIGA benchmark
with multiple annotations shows that our AVAP framework
outperforms a range of state-of-the-art multiple annotations
segmentation methods.

Different from existing methods, AVAP adopts a completely
different network structure. The experiments show that the
annotations variation among multiple annotators of the disc is
small. Our model mainly improves the performance of modeling
annotator preference. And AVAP obtains the best-calibrated
segmentation results on both disc and cup. Compared with
MR-Net and PADL state-of-the-art methods, AVM only adopts
a very simple network structure. This further illustrates the
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effectiveness of modeling multi-annotations as a multi-class
segmentation problem. In future work, we can extend the AVM
module to introduce better network structures or loss functions
to further improve the performance of AVM.
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[36] Žukovec M, Dular L, Špiclin Ž. Modeling Multi-annotator Uncertainty as
Multi-class Segmentation Problem[C]//International MICCAI Brainlesion
Workshop. Springer, Cham, 2022: 112-123.

[37] He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016: 770-778.

[38] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with
deep convolutional neural networks[J]. Advances in neural information
processing systems, 2012, 25.

[39] Zhang L, Tanno R, Xu M C, et al. Disentangling human error from
ground truth in segmentation of medical images[J]. Advances in Neural
Information Processing Systems, 2020, 33: 15750-15762.

[40] Hendrycks D, Lee K, Mazeika M. Using pre-training can improve model
robustness and uncertainty[C]//International Conference on Machine
Learning. PMLR, 2019: 2712-2721.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on July 10,2023 at 02:44:38 UTC from IEEE Xplore.  Restrictions apply. 


