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Abstract

The brain age has been proven a phenotype with relevance to cognitive performance and
brain disease. With the development of deep learning, brain age estimation accuracy has
been greatly improved. However, such methods may incur over-fitting and suffer from poor
generalizations, especially for insufficient brain imaging data. This paper presents a novel
regularization method that penalizes the predictive distribution using knowledge distillation
and introduces additional knowledge to reinforce the learning process. During knowledge
distillation, we propose a gated distillation mechanism to enable the student model to
attentively learn key knowledge from the teacher model, given the assumption that the
teacher may not always be correct. Moreover, to enhance the capability of knowledge
transfer, the hint representation similarity is also adopted to regularize the model training.
We evaluate the model by a cohort of 3655 subjects from 4 public datasets, demonstrating
that the proposed method improves the prediction performance over several well-established
models, where the mean absolute error of the estimated ages is 2.129 years.
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1. Introduction

Aging is shown to have a significant impact on the brain structural changes, following a
general decline in cognitive performance and increased risk of neurodegenerative diseases
such as Alzheimer’s disease (Abbott, 2011) and Parkinson’s disease (Reeve et al., 2014).
Researches have demonstrated that MRIs could be used to predict chronological age and
show that brain age is vital to help improve the detection of early-age neurodegeneration
and predict age-related cognitive decline (Cole et al., 2017). It is an essential prerequisite
to achieve accurate brain age estimating for quantifying the predicted age difference as a
biomarker. Recently, deep learning methods such as Convolution Neural Network (CNN)
have been used to predict brain age and have achieved promising results (Cole et al., 2017;
Mouches et al., 2021; Ueda et al., 2019; Jénsson et al., 2019). However, these networks may
incur overfitting and suffer from poor generalizations, especially on age prediction with
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insufficient data. The aging process could be hardly controlled, and thus the collection of a
suitable dataset requires great effort and costs several years. Consequently most available
datasets typically contain a limited number of data samples.

Regularization strategies have been proposed to address this issue such as label dis-
tribution learning (Geng et al., 2013; Gao et al., 2020; Hu et al., 2019), label smoothing
regularization (Miiller et al., 2019), deep expectation (Rothe et al., 2015) and so on. The
predictive distributions contains the most succinct knowledge of the model, and thus it is
effective to regularize the training with predictive distributions (Yun et al., 2020). On this
line, an approach called Knowledge Distillation (KD) (Hinton et al., 2015), as an adaptive
version of label smoothing regularization, has been investigated widely and has shown to
improve generalization performance (Furlanello et al., 2018). Despite its use in model com-
pression, KD penalizes the prediction with a learned, softened, and more “realistic” version
of the teacher’s output (Yuan et al., 2020; Kim et al., 2021).

In this paper, we propose to revisit KD in the brain age prediction as a regularization
that penalizes the predictive distribution by introducing meaningful knowledge from the
teacher model. Our contributions can be summarized as follows: (1) We regularize the
model learning with the distilled knowledge from a pre-trained teacher model with the same
architecture. Additional knowledge of the softened logits output is introduced to reinforce
the learning process. (2) We leverage a Gated Distillation (GD) mechanism to guide the
model to attentively learn from the teacher model. Since the teacher model might bring
unconfident knowledge and give highly erroneous guidance to the student, the transferred
knowledge is gated by utilizing the teacher loss as a confidence score. (3) Furthermore,
the intermediate-level hint representations learning is adopted to regularize the model to
achieve more accurate latent features.

We demonstrate the effectiveness of our proposed method on several well-estimated
convolutional neural networks, such as ResNet, DenseNet, SFCN, and DeepBrainNet on
a cohort of four public datasets with 3655 subjects with the age range of 16-92 years. In
our experiments, the performance on the accuracy of our method is consistently lower than
other label paradigm regularization methods, and knowledge distillation-based methods,
where the DeepBrainNet achieves the best with a mean absolute error of 2.129 years, a
Pearson correlation of 0.987, and a cumulative score of 90.47%. With the regularization
method, we won the first in Tencent AIMIS Challenge 2021 in brain age prediction'. Our
code is available in the Git repository .

2. Method

2.1. Regularization with Knowledge Distillation

Knowledge distillation is a technique to transfer knowledge from a teacher model to a student
model, providing extra supervision signals in terms of the neighboring labels similarities
learned by the teacher. The student learns from more informative sources and predictive
probabilities from the teacher. As is proven in previous studies, knowledge distillation,
which can be interpreted as a learned label smoothing regularization (Yuan et al., 2020; Kim
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et al., 2021), has the flexibility of rescaling gradients (Tang et al., 2020) and transferring
dark knowledge (eg. the knowledge on wrong predictions) in classification tasks (Yun et al.,
2020).

2.1.1. MULTI-LABEL LEARNING IN BRAIN AGE REGRESSION.

Note that the characteristics of KD mentioned above exist (mostly) in the classification
tasks, but not in the regression tasks (Cheng et al., 2018). The regression network predicts
unbound, continuous values that are plagued with an unknown error distribution, without
access to any dark knowledge. To obtain more informative labels and robust regulariza-
tion methods, we first convert the single value regression to multi-label learning (MLL)
(Tsoumakas and Katakis, 2007; Zhang and Zhang, 2010) problem, posing the brain age
regression as a classification task.

MLL quantizes the single values into a multi-label set L, which is defined as a fixed label
set, interpreting the age range. To reduce the disturbance of boundary missing values, we
define the set as L = (I = 12+ Al - klk = 0,1,..., M — 1) ranging from 12 to 96, where it is
obtained with a bin step of Al and M = % + 1 bins. A real number py is assigned to each
label [i, representing the degree that the corresponding label describes the instance. These
labels sum to 1, and the expectation is equal to the real age value y = >, lppi, pr € (0,1).

In our implementation, the bin step Al is set as 4 with the L set of M = 22 bins, to
reduce the number of labels and mitigate the computational burden. To further describe the
label ambiguity between ages, the multi-label learning is extended to distribution learning
by generating age labels with a normal distribution with a hyper-parameter 6:
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The Kullback-Leibler (KL) divergence is usually used to measure the similarity between
the output prediction p(z) and the manually designed distribution p(x):
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where an output probability py is obtained from the model output z;(z) with a softmax
exp 2k (2)

funCtiOH ﬁk = W

2.1.2. KNOWLEDGE DISTILLATION

We denote T" and S as the teacher and student networks respectively. The teacher model
is first trained with the objective function (2) separately, and the student learns from a
weighted combination of KL divergence and soft targets from the teacher. Knowledge
distillation trains the student model using the KL divergence, and a relaxation temperature
7 is introduced to soften the signal arising from the teacher output:

Pl (x; T) = softmam(zT(:U)/T),ﬁS(:r;T) = softmax(zs(x)/T), (3)

The student network is then trained to optimize with the following objective function:
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Figure 1: Details of network architecture for teacher (upper) and student training (lower).
The implementations of hint training, knowledge distillation, and gated distilla-
tion are figured in brief.

Lip = KL(p" (a;7)[|p° (a3 7)) (4)

Finally, the formulation for the student training with KD can be obtained as a regular-
ization form by multiplying a square of the temperature 72 with a weight \:

L = KL(p®(x)|[p°(x)) + A2 K L(p" (2;7)|[p% (2; 7)) ()

Note that the first term in (5) is the KL divergence between the student output and the
ground truth, and the second term reinforces the student network to learn from the softened
output of the teacher model.

2.2. Gated Distillation from the Teacher Model

Considering that teacher models do not always bring good knowledge, we regularize the
student model to learn from the teacher model when the teacher provides confident infor-
mation. To this end, we re-weighted the teacher prediction error as a confidence score to
guide the student model for training. Intuitively, when the error is too large to supervise,
the student would only learn from the ground truth by itself without learning from the
teacher model. The Gated Distillation (GD) mechanism is obtained as:

TII

H — 9

Yp =1 —clip(———"—,1),0p, = Zlek (6)

where 1 is the transferring weight for k-th sample, and GT denotes the ground truth
labels. And o denotes the prediction of the models and is obtained with the expectation of
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the label distribution. The 7 rescales the prediction error, and the clip function restraints
the weights as ¢ € (0,1). Different from the Attention Imitation Loss (Saputra et al., 2019),
our design aims to reduce the complexity burden, at the same time to limit the model to
learn knowledge from the teacher model with specified confidence. The setting of  and clip
operation threshold the prediction error with an upper bound. We consider that the teacher
model could not give meaningful knowledge to the student model when the prediction is
out of this range. Our implementation helps to mitigate the disturbance of the unconfident
transferred knowledge and contributes to a more stable training.

2.3. Regularization with Latent Representations

Considering that regularizing the model training with the only output of the models would
not obtain equal generalization capability to the teacher model, we introduce the intermediate-
level hint training to guide the student for training. The intermediate-level hint training
(HT) provides a novel way in KD’s transferring knowledge, which achieves success in train-
ing the student with deeper or shallow layers (Romero et al., 2014). We also argue that
this is also an important regularization for self-knowledge transferring in mimicking the
generalization capability of the teacher. The objective function is designed as:

Lt = || (x) = hi' (2)|]” (7)

where the hint layer is chosen by [-th layer. Here, the Lo loss is implemented to minimize
the discrepancy between the representations of the teacher and the student models.

Finally, we propose the modification of intermediate-level hint training termed Adaptive
Learning with Knowledge Distillation as follows:

L=Lpr+MyYLkgp+ XLyt (8)
= KL(p® (@)||p°(x)) + MK L(" (a5 7)| 9% (3 7)) + Aetp[ |1 () = b (2)[]> - (9)

where the hint representation similarity is combined with the weight A2, and the 1 is the
Gated Distillation weight as seen in (6).

3. Experiments

3.1. Datasets and Preprocessing

The methods were evaluated on T1l-weighted MR images from a cohort of four public
datasets including the IXI database (http://brain-development.org), the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (Jack Jr et al., 2008), the Open Access Series of
Imaging Studies (OASIS)(Marcus et al., 2010), and 1000 Functional Connectomes Project
(1000-FCP, http://www.nitrc.org/projects/fcon_1000). Only healthy subjects were
selected in our experiments, with no indication of neurological pathology, and no psychiatric
diagnosis. The ADNI and OASIS datasets are public with longitude studies, where 1024
and 1028 adult and elderly subjects with ages ranging from 42 to 92 are included. The
1000-FCP projects mainly cover the young with 1040 subjects in the mean age of 25, and
the IXT dataset covers 563 subjects with a full range of ages. A total of 3655 T1-weighted
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MRI images of the subjects aged 16-92 years old are selected to form our cohort. All the
images were acquired at either 1.5T or 3T T1-weighed MRI.

All the T1w images were processed including AC-PC aligns, brain skull stripping, bias
field correction (Sled et al., 1998), and linear-normalization into the standard MNI space.
Additionally, z-score normalization is employed to narrow the gap between different data
centers and is shown to improve the synthesis results and is vital for successful deep learning-
based MR image synthesis (Reinhold et al., 2019). After preprocessing, all images are
down-sampled trilinearly into the standard 2mm3 MNI space and padded into the size of
96 x 112 x 96. 5-fold cross-validation was implemented for evaluation.

3.2. Performance evaluation

The performance is evaluated by the mean absolute error (MAE), Pearson correlation co-
efficient (PCC), and cumulative score (CS). PCC measures the correlation between the
predicted ages and the chronological ages. The CS is the accuracy of age estimation within
a threshold «, which is obtained by: CS(«) = % x 100%, where Ne<, is the number
of samples on which the absolute error of prediction e is no higher than the threshold .
Moreover, group comparisons involved Wilcoxon test are implemented on the absolute error
between the metric regression baseline and other methods, and the calculated p values are

used to measure the performance improvement.

3.3. Experimental Setup

Network architecture. We employ three well-estimated models including ResNet18,
ResNet50 (He et al., 2016), and DenseNet121 (Huang et al., 2017). To suit our 3D neu-
roimaging data, we utilized the standard architecture and replace the 2D operations with
3D. And a global average pool is applied to average the features. Besides the common
structure mentioned before, two neural networks: SFCN (Peng et al., 2019), DeepBrainNet
(Bashyam et al., 2020) that are specially designed for brain age estimation are also imple-
mented, which are published recently and achieve state-of-the-art performance. The SFCN
contains six convolution, batch normalization, activation, and max-pooling layers with the
channels of convolution as [32, 64, 128, 256, 256, 88] respectively. The DeepBrainNet is
implemented based on the Inception-Res-V2 model. All these models encode the image
data into 88 features. A multiple layer perception with three layers is utilized to classify
the features into 22 probabilities followed by a softmax function.

Comparison and ablation studies. In this paper, we first compared our method with the
baselines including metric regression, multi-label learning, and label distribution learning
(LDL). LDL can be interpreted as a special case of MLL by setting the label set with a
distribution. Moreover, two recently published KD methods that achieve the state-of-the-
art performances in classification are also implemented for comparison, including Teacher-
free Knowledge Distillation (TF-KD) (Yuan et al., 2020), and Progressive Self-Knowledge
Distillation (PS-KD) (Kim et al., 2021). In detail, TF-KD deploys self-training that a model
is first pre-trained and then provides a soft label to train itself again. PS-KD transforms
the fix pre-trained teacher model to that of the past predictions. Compared with these two
methods, our proposed method is built based on TF-KD and attentively refines the distilled
knowledge (hint representations and soft labels) using the gating mechanism. Especially,
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PS-KD is a one-stage training method, while TF-KD and our proposed methods are within
two stages. To further evaluate the effectiveness of our proposed method, we conducted
ablation studies on hint learning and Gated Distillation. We searched the hyper-parameters
to obtain objective results for all these methods. The multi-label set length in this paper
is unified to 22 with a bin step of 4. In KD-based methods, the temperature 7 is decided
with a search of [1, 5, 10, 25]. The A; and Ay are searched within [0.2, 0.4, 0.6, 0.8].

Training details. All the models are trained with the same setting. In detail, the networks
are trained by the Adam optimizer on the PyTorch 1.6 platform, with an initial learning
rate of le-6, an L2 weight decay coefficient of 5e-5. The learning rate is increased linearly
to le-4 in 20 warmup epochs. The best model was obtained based on the validation loss
and trained with 300 epochs. The batch size is set to 32 and it takes around 16 hours for
training on two NVIDIA V100 GPU with 32G memory. All the models were trained from
scratch. To reduce the risk of overfitting, two data argumentation methods were applied
during training—random rotation and random shifting. The rotation angles were between
—10" and 10" and the input was randomly shifted by between -5 and 5 voxels along every
axis with equal probability. The hyper-parameter 6 is set as 2, and 7 is 5.

4. Results

Table 1 shows the validation accuracy of five well-estimated CNN models in terms of MAE,
PCC, CS with a = 5, and p value, where the best results of each model is shown in bold.
All the results reported are averaged with the 5-fold cross-validation. We compared our pro-
posed method with the metric regression, multi-label learning, label distribution learning,
and knowledge distillation-based methods including TF-KD, PS-KD. Several observations
can be obtained: (1) Not all the regularization methods achieve improved performance in
brain age prediction. For example, label paradigms such as multi-label learning and dis-
tribution learning did not perform better than the baseline metric regression on ResNet-18
and ResNet-50. (2) On the other hand, KD-based methods including PS-KD and TF-KD
perform better than MLL and DLL. For example, on the ResNet-50, the MAE is 2.440
and 2.459 by TF-KD and PS-KD respectively. And our proposed method even reduced the
MAE to 2.395. PS-KD performs worse than TF-KD and our method on five models, which
is not consistent with previous studies (Kim et al., 2021). We suspect that these results
are caused by the unstable convergence in the brain age prediction task with limited and
insufficient data. The teacher model of our method and TF-KD is fixed and pre-trained,
however, it is dynamic in PS-KD. (3) The two specifically designed networks for brain age
estimation (SFCN and DeepBrainNet) achieve better performance on accuracy than the
general-purpose models. The lightweight SFCN network with 6 layers using regularization
such as LDL provides better results than deep residual and densely connected networks
with more than 18 layers. This is the same as the finding in (Peng et al., 2019) that a
lightweight model can achieve even better performance for brain age estimation. (4) Fi-
nally our proposed method consistently outperforms other regularization methods on all the
five well-estimated models, where the DeepBrainNet achieves the best performance with an
MAE of 2.129, a CS of 90.47%, and a PCC of 0.987. Significant improvements are found in
SFCN and DeepBrainNet (p = 0.001).
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On the other hand, to further inspect the effectiveness of the proposed method, we
conducted ablation studies on the gated distillation mechanism and hint training. In Table 2,
we observe that the gated distillation plays an important role in improving performance,
especially on ResNet-18, ResNet-50, DenseNet-121, and DeepBrainNet. In addition, the
hint training slightly improves the performance on all the models except ResNet-50. We
suspect that the unsatisfactory results are caused by over-regularization, which is due to an
inappropriate selection of the intermediate representations. However, when we combine the
gated distillation and hint training, further improvements are achieved on all the models.

Table 1: Performance with different regularization methods on five models.

Metric Regression MLL

MAE CS(a =5) PCC p value MAE CS(a = 5) PCC p value

ResNet-18 | 2.642 (0.118)  84.93%(2.677)  0.983 (1.032e-4) B 2.679 (0.212) 85.06% (1.918) 0.983 (9.539¢-5) _ 0.985
ResNet-50 | 2.489 (0.235) 87.06% (1.976) 0.984 (2.459e-4) - 2.528 (0.217) 86.20% (2.585) 0.984 (1.339e-4)  0.829
DenseNet-121 | 2.507 (0.167) 86.49% (1.051) 0.984 (8.480e-5) - 2.512 (0.123) 87.62% (0.692) 0.984 (8.281e-5)  0.949
SFCN 2.662 (0.110) 85.35% (0.637) 0.983 (9.625e-5) - 2.441 (0.078) 87.34% (1.188) 0.985 (3.101le-4) 0.063
DeepBrainNet | 2.521 (0.294) 86.63% (1.3308) 0.984 (4.525¢-4) B, 2.383 (0.166) 87.48% (0.813) 0.985 (6.940e-5)  0.299

LDL PS-KD + LDL

MAE CS(a =5) PCC p value MAE CS(a = 5) PCC p value

ResNet-18 2.674 (0.313) 84.21% (4.182) 0.983 (1.617e-4) 0.984 2.618 (0.123) 85.21% (3.522) 0.983 (9.428e-5) 0.611
ResNet-50 2.510 (0.191) 86.49% (1.578) 0.984 (2.270e-5) 0.853 2.459 (0.139) 86.77% (1.512) 0.985 (7.634e-5) 0.783
DenseNet-121 | 2.454 (0.184) 87.05% (1.500) 0.985 (8.212e-5) 0.614 | 2.446 (0.075) 86.77% (2.810) 0.985 (1.62de-4)  0.552
SFCN 2.345 (0.064) 87.48% (0.316) 0.986 (6.390e-5) 0.005* | 2.388 (0.165) 87.20% (1.253) 0.985 (7.082e-5)  0.052
DeepBrainNet | 2.349 (0.134) 87.62% (1.797) 0.986 (1.352e-4) 0.030* | 2.364 (0.034) 86.20% (0.384) 0.985 (6.810e-5) 0.011*

TF-KD + LDL Ours

MAE CS(a =5) PCC p value MAE CS(a = 5) PCC p value

RosNot-18 | 2.606 (0.199) 85.20% (2.515) 0.983 (1.9780-4) _ 0.631 | 2.405 (0.169) 87.05% (1.471) 0.985 (7.4940-5)  0.096
ResNet-50 | 2.440 (0.175) 87.78% (1.439) 0.985 (7.552e-5) 0.747 | 2.395 (0.157) 86.77% (3.504) 0.985 (7.179e-5)  0.538
DenseNet-121 | 2.435 (0.134) 87.06% (2.457) 0.985 (6.963e-5) 0.432 2.341 (0.084 88.90% (1.371) 0.986 (1.516e-4) 0.021%*
SFCN 2.332 (0.040) 87.62% (0.416) 0.986 (2.697e-5) 0.003** | 2.269 (0.036) 89.76% (0.773) 0.986 (6.462e-5) 0.001**
DeepBrainNet | 2.338 (0.061) 87.20% (0.380) 0.986 (6.531e-5) 0.008** | 2.129 (0.026) 90.47% (0.267) 0.987 (3.098e-5) 0.001**

Table 2: Ablation studies on adaptive transferring weights and hint learning.
Ours w/o GD Ours w/o HT

MAE CS(a = 5) PCC p value MAE CS(a = 5) PCC p value

RosNet-18 | 2.515 (0.199) 87.06% (1.412) 0.983 (8.8130-5) 0.383 | 2.442 (0.181) 87.62% (2.409) 0.985 (7.4390-5)  0.283

ResNet-50 2.527 (0.161) 86.20% (2.541) 0.983 (7.677e-5) 0.829 | 2.427 (0.150) 86.91% (3.519) 0.985 (9.291e-5) 0.638

DenseNet-121 | 2.422 (0.078) 87.91% (1.398) 0.987 (4.994e-5) 0.332 2.422 (0.076) 85.78% (2.498) 0.985 (7.192e-5) 0.341
SFCN 2.441 (0.033) 88.76% (1.360) 0.986 (5.901e-5) 0.098 | 2.332 (0.133) 87.48% (1.419) 0.987 (3.883e-5) 0.004**
DeepBrainNet | 2.356 (0.028) 87.06% (0.409) 0.986 (2.891e-5) 0.042* | 2.155 (0.061) 89.76% (0.815) 0.987 (1.897e-5) 0.001**

5. Discussion and Conclusion

In this paper, we demonstrate a novel regularization method based on knowledge distillation
and compare it with other regularization methods. These methods pose the brain age
regression as a deep classification task, at the same time regularizing the models to learn
with calibration and prevent over-confidence. Moreover, our proposed method estimates
the brain age by taking the confidence of the teacher knowledge into consideration. This
strategy encourages the student to attentively learn with meaningful knowledge. Finally,
our method achieves consistent improvement on five well-estimated CNN models.

In our implementation, the brain age prediction is transformed to a classification task
instead of directly regressing. On the one hand, this can improve the diversity of labels
by extending a single value into a multi-label set, on the other hand, preserving the ad-
vantages of KD eg. rescaling gradients, and transferring dark knowledge. The comparison
results of the regression models with KD and more detailed evaluation about the results
are demonstrated in the appendix.
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Appendix A. Study of the parameters of \;, Ay, and 7

Considering that a full grid search for all these hyper-parameters costs numerous time and
resources. We first fix the A; and A2 and search for the relaxation temperature (the best
results are achieved with a 7 = 10 on ResNet-18, ResNet-50, and SFCN, and 7 = 25 on
DeepBrainNet and DenseNet-121). In our comparison, it is found that the value of the
temperature is more sensitive to the results than A\; and Xo. After that, a grid search over
A1 and Ao is carried out. Notably, A\ = 0.8 and Ao = 0.8 are the optimal values.

Appendix B. Learning curves of different models

As is shown in Fig.2, the L1 loss values of the training and validation on the teacher model
and student model using our proposed method are figured in black, grey, green, and blue
respectively, and the absolute differences of the training and validation performances are
plotted under the learning curves, where the orange describes the differences on the teacher
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Figure 2: Learning curves with different CNN models based on our proposed method.

model and the red shows those on the student model. To smooth the curve, only the lowest
loss values are plotted. The student model got convergence more quickly than the teacher
model except for the ResNet-50 model. And the differences in the training and validation
performance are reduced on the student model compared with the teacher model.

Appendix C. Experimental results on regression

In addition to posing the brain age regression as a classification problem, we also compare
the results of our method on regression. The experiments are conducted based on the
baseline metric regression method, where a two-stage training is carried out by regularizing
the model with the Gated Distillation and the hint training.

As is shown in Table 3, our method achieves comparable results with TF-KD, and PS-
KD, where slight improvements are obtained on DenseNet-121, and ResNet-50. Attention
should be paid to the DeepBrainNet that the three models achieve comparable results, where
PS-KD seems more powerful with only a one-stage training. In addition, it is interesting
that our proposed method achieves improvement, even slightly, indicating that it might work
in regression problems. Overall, our proposed strategies help to increase the accuracy of
the brain age prediction in both regression and classification, where the multi-label learning
( and label distribution learning) with KD regularization achieves better performance on
accuracy than metric regression with KD.

Table 3: Comparisons with the KD-based methods on regression.

Metric Regression PS-KD
MAE CS(a=5) PCC MAE CS(a =5) PCC
ResNet-18  [2.642 (0.118) 84.93%(2.677) 0.983 (1.032e-4) | 2.523 (0.237) 86.20% (1.938) 0.984 (1.533e-5)
ResNet-50 [2.489 (0.235) 87.06% (1.976) 0.984 (2.459e-4)| 2.575 (0.301) 87.62% (1.565) 0.986 (4.898e-5)
DenseNet-121 | 2.507 (0.167) 86.49% (1.051) 0.984 (8.480e-5) | 2.372 (0.109) 87.06% (2.901) 0.986 (1.303e-4)
SFCN 2.662 (0.110) 85.35% (0.637) 0.983 (9.625e-5) [2.308 (0.083) 87.62% (1.039) 0.987 (3.202e-4)
DeepBrainNet [ 2.521 (0.294) 86.63% (1.3308) 0.984 (2.525e-4)| 2.245 (0.033) 88.90% (1.298) 0.988 (3.678¢-4)
TF-KD Ours
MAE CS(a =5) PCC MAE CS(a = 5) PCC
ResNet-18 [2.650 (0.321) 84.92% (0.654) 0.982 (8.982e-5)| 2.620 (0.231) 86.06% (1.036) 0.982 (4.098e-5)
ResNet-50 [2.775 (0.144) 84.92% (1.082) 0.983 (1.190e-4)|2.432 (0.165) 88.19% (0.737) 0.985 (6.110e-5)
DenseNet-121 |2.446 (0.129) 86.77% (1.003) 0.985 (6.090e-5) | 2.338 (0.027) 87.77% (1.882) 0.985 (8.717e-5)
SFCN  |2.601 (0.098) 85.35% (0.320) 0.986 (1.324e-5)[2.373 (0.312) 87.77% (1.109) 0.984 (1.221e-4)
DeepBrainNet | 2.253 (0.043) 88.62% (1.111) 0.987 (6.909e-5) | 2.241 (0.130) 89.42% (1.991) 0.987 (3.676e-5)
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Figure 3: The scatter plots of the predicted brain ages and chronological ages on the three
KD-based models: PS-KD, TF-KD, and our proposed model.
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Appendix D. Scatter plots of different models

The scatter plots between chronological age (X-axis) and predicted brain age (Y-axis) of
five well estimated CNN models with different regularization methods are shown in Fig. 3.

Appendix E. Performance comparison with different KD-based methods
on each dataset in terms of Mean Absolute Error

The performances on different datasets are shown in Table 4. Our proposed method achieved
the lowest MAEs in most cases. Overall, our method is generalizable to different datasets
from different sites.

Table 4: Performance of each dataset in terms of MAE.
ADNI OASIS

PS-KD TF-KD Ours PS-KD TF-KD Ours
ResNet-18 1.315 (0.151)  1.248 (0.181)  1.180 (0.129) | 2.335 (0.121)  2.389 (0.193) _ 2.056 (0.094)
ResNet-50 1.161 (0.180) 1.439 (0.139) 1.195 (0.137) 2.259 (0.163) 2.237 (0.201) 2.246 (0.134)
DenseNet-121 1.355 (0.217)  1.244 (0.131)  1.162 (0.125) | 2.232 (0.084) 2.351 (0.164) 2.060 (0.033)
SFCN 1.452 (0.092)  1.360 (0.128)  1.220 (0.033) | 2.114 (0.055)  2.102 (0.032)  2.142 (0.127)
DeepBrainNet | 1.176 (0.135)  1.147 (0.089)  1.009 (0.033) | 2.441 (0.218)  2.161 (0.083)  2.028 (0.028)

IXI 1000-FCP
PS-KD TF-KD Ours PS-KD TF-KD Ours

ResNet-18 4533 (0.334) 4.486 (0.238)  4.159 (0.254) | 3.632 (0.223) 3.432 (0.158)  3.275 (0.192)
ResNet-50 3.851 (0.071)  4.059 (0.137)  3.880 (0.191) | 3.428 (0.191)  3.158 (0.137)  2.964 (0.082)
DenseNet-121 | 4.042 (0.318)  4.286 (0.313)  3.994 (0.229) | 3.107 (0.153)  2.909 (0.238)  3.140 (0.238)
SFCN 3.696 (0.055)  3.636 (0.171)  3.408 (0.046) | 3.033 (0.109)  2.968 (0.059)  3.042 (0.170)
DeepBrainNet | 3.861 (0.299) 3.619 (0.178)  3.563 (0.144) | 2.895 (0.029) 3.064 (0.448)  2.793 (0.267)
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