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Abstract
The brain activities and the underlying wiring diagrams are vulnerable in multiple scle-
rosis (MS). Also, it remains unknown whether the complex coupling between these 
functional and structural brain properties would be affected. To address this issue, 
we adopted graph frequency analysis to quantify the high-order structural-functional 
interactions based on a combination of brain diffusion and functional MRI data. The 
structural-functional decoupling index was proposed to measure how much brain 
regional functional activity with different graph frequency was organized atop the 
underlying wiring diagram in MS. The identified patterns in MS included (1) disrup-
tion of inherent structural-functional coupling in the somatomotor network (β = 0.05, 
p  =  0.03), and (2) excessive decrease of decoupling in the subcortical (β  =  −0.10, 
p  =  0.02), visual (β  =  −0.04, p  =  0.01), and dorsal attention networks (β  =  −0.12, 
p  =  0.03). Besides, this structural-functional coupling signature in the somatomo-
tor network was associated with cognitive worsening of MS patients (β  =  −24.31, 
p = 0.006). Overall, our study unveiled a unique signature of brain structural-functional 
reorganization in MS.
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1  |  INTRODUC TION

Multiple sclerosis (MS) is acknowledged as an inflammatory neuro-
degenerative disorder affecting central nervous system with severe 
clinical manifestations (Filippi et al.,  2018). Apart from the com-
mon brain hallmarks of MS such as demyelination and axonal loss 
(Zipp et al.,  2013), an advanced understanding of brain structural 
network topology would further help illustrate the neuropatho-
logical substrate of MS progression and inform clinical interven-
tion and prevention (Calabrese et al., 2015). Several diffusion MRI 
studies reported that the disruptions of brain structural connectiv-
ity (SC) network in MS patients, such as lower nodal connectivity 
(Charalambous et al., 2019; Solana et al., 2018), the reduced strength 
of rich-club connections (Shu et al., 2018), and increased network 
modularity (Tur et al., 2019). Meanwhile, recent neuroscientific in-
vestigations observed the contemporary presence of widespread 
reorganizations of brain functional activity in MS (Rocca et al., 2016; 
Tahedl et al.,  2018). Aberrantly increased or decreased functional 
connectivity (FC) emerged on subcortical regions (i.e., the thalamus, 
amygdala, and basal ganglia) (Cui et al., 2017; Sbardella et al., 2017; 
Schoonheim et al., 2014) and the temporal gyrus (Bisecco et al., 2019; 
Liu et al., 2016) were suggested to exhibit both adaptive (preventing 
impairment) and maladaptive (worsening impairment) effects (Tahedl 
et al., 2018; Zhang et al., 2021). Together, evidences suggested that 
both brain structural network and functional activity played critical 
roles in MS-related deficits. However, it is still poorly understood 
how these two components affect each other in MS evolution and 
modulate clinical manifestation.

Given that functional activity is shaped by the underlying wiring 
diagram (Bassett & Sporns, 2017; Stiso & Bassett, 2018), it is essen-
tial to clarify the macroscopic interdependency degree between the 
brain functional activity and the structural network or better un-
derstanding of MS mechanism. Most multimodal MRI studies calcu-
lated SC-FC correlation coefficients to quantify the degree of brain 
structural-functional coupling (for review, see (Wang et al., 2015)). 
In early-stage MS, the dynamic altered brain SC-FC correlations 
were observed when predicting patients’ cognitive function and 
clinical disability (Koubiyr et al.,  2019, 2021). However, this direct 
SC-FC correlation was criticized as being oversimplified (Suarez 
et al., 2020). The relatively sparse SC could only explain less than 
50% of the variance in FC (Honey et al., 2009), partly due to indirect 
signaling between neuronal populations via common neighbors in a 
complex network. Therefore, a comprehensive evaluation of high-
order brain structural-functional coupling is necessary to gain in-
sights into the MS neuropathological mechanism.

The recently developed approach, named graph frequency anal-
ysis (GFA) (Huang et al., 2016), opens an avenue to quantify high-
order structural-functional interactions among brain regions. Briefly, 
the brain regional activity measured by fMRI signals could be sep-
arated into several portions in the graph domain corresponding to 
various connectome harmonics from low to high frequency (Atasoy 
et al., 2016, 2018). By calculating the energy ratio of the decoupling 
portion to the coupling portion, GFA allows us to quantitatively 

evaluate how much functional activity aligns with or deviates from 
the structural constraints in MS, and how this level relates to disease 
disabilities.

In this study, we aim to investigate the high-order brain 
structural-functional interaction related to MS using GFA. In par-
ticular, we recruited 55 MS patients, including 16 in clinically iso-
lated syndrome (CIS) stage and 39 in relapsing-remitting MS (RRMS) 
stage, as well as 58 age-matched healthy controls (HCs). After first 
describing the basic characteristics of structural-functional coupling 
in HC, we extended GFA approach on the MS cohort to evaluate 
how much functional activity in MS aberrantly align with or devi-
ate from the structural connectome at brain intrinsic connectivity 
network (ICN) level. Finally, we examined the relationship between 
brain structural-functional coupling and MS-related clinical pheno-
types (disease severity and cognitive function).

2  |  METHODS

2.1  |  Study participants

This cross-sectional observational study recruited a total of 122 
MS and HC participants from Xuanwu Hospital of Capital Medical 
University, Beijing, China. After removing eight subjects due to 
imaging quality control (see Figure S1), 16 CIS patients (mean age 
30.2 ± 8.4, 6 females), 39 RRMS patients (mean age 34.0 ± 9.4, 14 
females), along with 58 age-matched HCs (mean 32.2 ± 10.2, 18 fe-
males) were selected during 2016 to 2019. All of these participants 
were right handed measured by the Edinburgh Inventory to remove 
the potential handedness effects on diffusion measures (Tinelli 
et al., 2013). The CIS patients were prospectively examined with a 
clinical episode suggestive of MS within 6 months from onset (Miller 
et al.,  2012). All MS patients presented with a relapse-remitting 
course and fulfilled the 2010 modified McDonald’s criteria (Polman 
et al., 2011). To exclude the potential confounding effects of inflam-
mation or edema on brain structure and function, all patients in the 
current study were in remission without relapse. None of the CIS 

Significance

Based on the hypothesis that the brain structural-
functional interplay would be disrupted by the progression 
of neuroimmune inflammation, we focused on quantita-
tively measuring the brain coupling signature between 
functional activities and structural connectome affected 
by clinically isolated syndrome and relapsing-remitting 
multiple sclerosis (MS). Our results demonstrated the ab-
normality of brain structural-functional coupling affected 
by MS progression was associated with cognitive function. 
The current findings suggest a unique signature of brain 
structural-functional reorganization in MS.
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and MS patients had been treated with medications (e.g., corticos-
teroids and disease-modifying medications) within 4 weeks before 
MRI scanning. Our study was approved by the Xuanwu Hospital 
Ethics Committee. Written informed consents were obtained from 
all participants.

2.2  |  Clinical assessment

The demographic and clinical characteristics, including disease dura-
tion, Expanded Disability Status Scale (EDSS) score (Kurtzke, 1983), 
and 2-second and 3-second paced auditory serial addition tests 
(PASAT-2 and PASAT-3), were recorded by an experienced neurolo-
gist (H.D., with more than 25 years of experience in neurology) at the 
time of the MRI. These PASAT scales assessed patients’ cognitive 
function, particularly in working memory, attention, and arithmetic 
capabilities. The demographic and clinical characteristics of all par-
ticipants are demonstrated in Table 1.

2.3  |  Imaging protocol

The MRI data were acquired on a 3.0 T MR system (Trio Tim; 
Siemens, Erlangen, Germany) with a 12-channel head coil. The fol-
lowing MRI sequences were performed: T1-weighted MRI pro-
tocol: magnetization-prepared rapid gradient-echo sequence, 
inversion time (TI)  =  1,000  ms, echo time (TE)  =  2.13  ms, repeti-
tion time (TR) = 1,600 ms, field of view (FOV) = 256 × 256 mm2, 
isotropic voxel size = 1 mm, flip angle = 9; T2-weighted MRI pro-
tocol: turbo spin echo sequence, 35 axial slices, TE/TR = 87/5,000 
ms, FOV = 256 × 256 mm2, voxel size = 1 × 1 × 4 mm3; diffusion 
MRI protocol: spin echo EPI sequence, TE/TR  =  98/11,000 ms, 
FOV = 256 × 232 mm2, flip angle = 90, isotropic voxel size = 2 mm, 
60 gradient directions with b = 1,000/2,000 s/mm2, and two ad-
ditional b0 image; and resting-state functional MRI protocol: single-
shot gradient-echo T2* with 180 dynamics, TE/TR = 30/2,000 ms, 
FOV = 220 × 220 mm2, matrix = 64 × 64 × 32, slice thickness = 3 
mm, acquisition time = 7 min. Additional T2-weighted sagittal scans 
on spinal cord were also acquired to examine focal lesions.

2.4  |  Processing of MRI data

Lesion filling was performed ahead of brain anatomical parcel-
lation to avoid potential spuriously segmented thinned cortex in 
MS patients (Tillema et al.,  2016). In our practice, hyperintense 
white matter lesions were manually delineated on MS patient’s T2-
weighted images by an experienced neuroradiologist (Q. Z.) using 
MRIcro software (https://www.mccau​sland​center.sc.edu/crnl/
mricr​o/). By T2-to-T1 rigid image coregistration using FSL-flirt 6.0, 
the obtained binary lesion masks were transformed and filled the 
T1-weighted image using lesion_filling command in FSL (Battaglini 
et al., 2012) for MS individuals. Then each individual T1-weighted TA
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brain cortical surface was anatomically parcellated by FreeSurfer 
V6.0 pipeline (Fischl, 2012) and further converted to 360 cortical 
regions defined by Glasser’s multimodal atlas by surface mapping 
(Glasser et al., 2016). For quality control, the cortical parcellations 
of one CIS and three RRMS patients were manually edited, ac-
cording to the surface editing steps described in McCarthy et al. 
(2015). Specifically, we inserted control points around error re-
gions for each hemisphere, and reran autorecon2 in FreeSurfer 
pipeline to correct surface errors. To define individual subcortical 
regions, we also used FSL-FRIST pipeline to segment the thala-
mus, the hippocampus, the amygdala, the putamen, the caudate, 
the pallidum, the ventral diencephalon, the accumbens bilaterally, 
and the brainstem (Patenaude et al., 2011). We replaced the bilat-
eral hippocampus defined in Glasser’s multimodal atlas with the 
extracted volume by FSL-FIRST pipeline to achieve better parcel-
lation accuracy. Finally, 375 brain cortical and subcortical parcel 
labels for each participant were obtained in native T1-weighted 
space.

Image preprocessing of diffusion MRI data, including denois-
ing, motion correction, b0 and eddy current distortion correction, 
was performed by MRtrix 3.0.0 (Tournier et al., 2012). Then frac-
tional anisotropy (FA) map was estimated based on diffusion ten-
sor modeling to quantitatively measure the disruption of brain WM 
microstructure. Moreover, the diffusion-weighted images were 
applied to estimate the multi-shell fiber orientation distribution 
using constrained spherical deconvolution (Tournier et al., 2008) 
with a default maximum spherical harmonic degree lmax = 8. To 
improve the biological plausibility of the generated streamlines, 
we referred to the anatomical-constrained tractography method 
for tractography estimation (Smith et al.,  2012). In our practice, 
both the brain segments (i.e., gray matter, white matter, and cere-
brospinal fluid) based on high-resolution T1-weighted images and 
the lesion masks manually delineated on T2-weighted images were 
used to constrain streamline propagation. This strategy was ad-
opted here for fiber tracking because certain white matter tracts 
including the optic radiation can be reconstructed with higher 
accuracy level compared with conventional strategies in MS pa-
tients (Horbruegger et al.,  2019). The second-order Integration 
over Fiber Orientation Distributions (iFOD2) algorithm (Tournier 
et al., 2010) was applied to estimate 5 million probabilistic stream-
lines as follows: FOD amplitude threshold = 0.1, step size = half 
original voxel size, maximum curvature per step = 45°. We further 
performed the spherical-deconvolution informed filtering (SIFT) 
algorithm to obtain the tractogram containing 1 million stream-
lines to improve biological accuracy and reproducibility (Smith 
et al., 2015). By SyN (ANTs v2.1.0) nonlinear image coregistration 
(Avants et al., 2008) from b0 to native T1-weighted image, we used 
the inverse transform map to warp the brain parcel labels into the 
individual diffusion MRI space. From these tractogram and ana-
tomical parcellations, the individual white matter structural net-
work matrix A was constructed, where each element represented 
the number of streamlines connecting brain regions adjusted by 
streamline length (Hagmann et al., 2007).

The resting-state fMRI images were preprocessed by fMRIPrep 
20.1.3 (Esteban et al., 2019). In brief, functional data were processed 
by slice timing correction using 3dTshift from AFNI (Cox, 1996), mo-
tion correction using FSL-mcflirt (Jenkinson et al., 2002), and BOLD-
to-T1w transformation using bbregister in FreeSurfer V6.0 with nine 
degrees of freedom (Greve & Fischl, 2009). These preliminary pro-
cessing stages were then followed by the confound regression using 
CompCor and spatial smoothing with an isotropic 5 mm Gaussian 
kernel using xcpEngine (https://github.com/PennB​BL/xcpEn​gine) 
(Ciric et al., 2017). The linear trend, mean framewise displacement 
measured by head motion Friston-24 model (Friston et al.,  1996), 
and signals from white matter and cerebrospinal fluid were also re-
gressed out as nuisance covariates. None of the participants was 
found with the mean displacement > 2.5 mm in quality check to as-
sess head motion. By mapping the subject-specific anatomical par-
cellations defined in the corresponding high-resolution T1-weighted 
image via transformation matrix returned by bbregister procedure, 
the resultant z-scored BOLD signal averaged on each brain region 
was chosen as the brain functional activity measure. To further 
identify the corresponding relationship between each brain network 
node and ICNs, all cortical brain parcels in Glasser’s multimodal atlas 
were mapped to the seven networks predefined by Yeo atlas in MNI 
space (Yeo et al., 2011). All the MRI images and parcellation results 
have been visually checked by an experienced neuroradiologist (J. 
H., with more than 10 years of experience in neuroradiology) and 
passed quality control. The network graph metrics including global 
efficiency, clustering coefficient, and modularity were further cal-
culated using bctpy 0.5.2 tool (https://github.com/aestr​ivex/bctpy).

2.5  |  Graph Fourier analysis theory

To explicitly characterize the brain structural-functional coupling, 
we applied GFA approach (Huang et al., 2016) to quantify the align-
ment or liberality extent of the brain activity with respect to the 
underlying structural network. Analogous to the classic Fourier 
transformation which decomposed time-domain signal into multiple 
frequency-domain bands, GFA enables us to empirically separate the 
functional activity (BOLD signals) on each graph node, timepoint by 
timepoint, into various harmonic components (Atasoy et al., 2018). 
Explicitly, the harmonic component with low frequency corresponds 
to the aligned brain activity along the geometrical network path-
ways, while the one with high frequency represents the rapidly 
varying brain activity with respect to the structural topological pat-
tern. The computational pipeline of GFA is conceptually illustrated 
in Figure 1. Given an individual brain structural network matrix A, 
we applied the eigenvector decomposition on the graph L = VΛVT 
after a Laplacian shift L = D − A, where D denotes the diagonal de-
gree matrix of A. Following Huang’s work (Huang et al., 2016), the 
derived eigenvalues �k with the order �1 ≤ �2 ≤ ⋯ ≤ �n referred to 
graph frequencies from low to high level, while the corresponding ei-
genvector uk can be interpretated as connectome harmonics (Atasoy 
et al., 2018). The graph Fourier transform of the brain BOLD signals 

https://github.com/PennBBL/xcpEngine
https://github.com/aestrivex/bctpy
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xt ∈ Rn in timepoint t with respect to Laplacian graph L was defined 
as:

Then the inverse graph Fourier transform of x̃t is represented as:

Consequently, the graph Fourier transform coefficient x̃t indi-
cated the extent to which the observed brain functional activity de-
viates from the anatomical topology.

2.6  |  Calculation of brain structural-functional 
decoupling index

Inspired by a previous study (Preti & Van De Ville, 2019), we applied 
the median-split strategy to filter the functional activity into low-
frequency (alignment) and high-frequency (liberality) portions with 
equal energy:

 To measure how much the local functional activation orients toward 
alignment or liberality with respect to the anatomical constraints, the 
structural-functional decoupling index (SFDI) was further introduced as 
the ratio between the norms of xlow

t
 and xhigh

t
 across time. The higher 

value of SFDI represents liberality and the lower value represents 
alignment. We consider the mean SFDI value across the brain regions 
as a concentration measure of a specific ICN.

2.7  |  Null model generation

To evaluate the robustness of SFDI, the spectral randomization 
method (Pirondini et al., 2016) was introduced to create surrogate 
brain functional signals based on the empirical structural network 
matrix A. Specifically, we randomly changed the sign of the graph 
spectral coefficients for 100 times to generate surrogate functional 
signals, as indicated below:

 where P is a diagonal matrix with random +1/−1 values. The surrogate 
SFDI was further calculated based on the individual structural network 
matrix A and each surrogate functional activity xrand

t
 to characterize 

(1)x̃t = V
T
xt

(2)xt = V x̃t

(3)xt = x
low
t

+ x
high

t

(4)x
rand
t

= VPV
T
xt

F I G U R E  1  Schematic flowchart of the graph frequency analysis. (a) The individual brain structural network established by tractography 
on diffusion MRI data was transformed to separate connectome harmonics by graph Fourier transform. (b) The BOLD signals at every 
timepoint were further represented as a linear combination of connectome harmonics from low to high graph frequency (structural 
Laplacian eigenvalues). SFDI was calculated as the ratio between the high-frequency (decoupling) portion and the low-frequency (coupling) 
portion. (c) The unfiltered BOLD time series of 375 parcellated brain regions from a randomly selected participant (top), as well as the 
corresponding filtered BOLD signals associated with the lowest (middle) and highest (bottom) five frequencies
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a null distribution. The coupling extent was determined to be signifi-
cantly concentrated if the empirical SFDI among all participants was 
less than 95% of the null randomizations. This null model was deployed 
to assess whether the parcel-level or ICN-level properties of brain 
structural-functional interplay could be robustly maintained.

2.8  |  Statistical analysis

To explore the potential network factors that account for ICN-level 
SFDI variations in HC, we calculated Spearman correlation to assess 
the ICN-level relationship between SFDI and the topological prop-
erties (described by graph metrics including the sum of connectiv-
ity strength, global efficiency, clustering coefficient and modularity, 
see (Sporns, 2011) for details). Then we applied general linear model 
(GLM) to evaluate MS versus HC group effect on ICN-level SFDI, 
adjusting age, sex, and head movement effects. For the assessment 
of imaging-behavior association, we investigated the relationship 
between the clinical phenotypes (i.e., EDSS, PASAT-2, and PASAT-3 
scales) and SFDI by GLM for each ICN, after controlling for the same 
covariates. Overall, statistical analysis in current study was all per-
formed using R (version 3.6.1, https://www.r-proje​ct.org/). Multiple 
group tests were controlled by false discovery rate (FDR) correction. 
Adjusted p < 0.05 or less was considered statistically significant.

3  |  RESULTS

3.1  |  Demographic and clinical information

Table 1 described the characteristics of the participants in the cur-
rent study. No significant difference was observed in age (T = −0.4, 
p  =  0.7) or sex distribution (χ2  =  −0.2, p  =  0.7) between MS and 
HC. RRMS had a longer disease course (T = −3.6, p < 0.001), worse 
disability (T = −3.1, p < 0.001 for EDSS scale), worse cognitive per-
formance (T = 3.7, p < 0.001 for PASAT-2, T = 5.1, p < 0.001 for 
PASAT-3), and more lesion loads in brain (W = 193, p = 0.03 for T2 
lesion volume, Wilcoxon rank-sum test) than CIS patients.

3.2  |  Brain activity decomposition

The brain activity at each timepoint was decomposed into various 
connectome harmonics weighted by eigenvalues after graph Fourier 
transform, as illustrated in Figure 1. BOLD signal and the spatial pat-
terns of the corresponding connectome harmonics were rendered 
based on group averaged values among HC. In congruent with the 
brain structural spectral patterns discovered by previous studies 
(Atasoy et al., 2016; Preti & Van De Ville 2019), one can observe that 
the connectome harmonics with low graph frequency maximally 
preserve global geometric distribution of the underlying anatomical 
topology (e.g., homogeneous across the brain for the first harmonic, 

anterior–posterior covarying for the second harmonic, and left–
right covarying for the third harmonic) (Figure 1a), while those with 
high graph frequency encoded localized spatial patterns (Figure 1b). 
Notably, the brain activity was concentrated preferentially in lower 
frequency components, as shown in the BOLD power spectrum den-
sity curve (see Figure S2). To intuitively visualize the time-domain 
functional activity after graph decomposition, Figure 1c. showed the 
high and low graph frequency components of BOLD signals from all 
375 brain parcels for a randomly selected healthy control. While the 
functional signals filtered by low pass connectome harmonics (cor-
responding to the lowest 5 graph eigenvalues) varied consistently 
and smoothly on all brain regions, the filtered signals with high graph 
frequency (corresponding to the highest five graph eigenvalues) il-
lustrated high spatial variability with small amplitude.

3.3  |  Brain regional coupling patterns

The human brain regional coupling pattern was illustrated by 
projecting HC group-average SFDI on brain network nodes (see 
Figure 2b). As for a spatial reference, Figure 2a demonstrated the 
node-ICN belonging relationship according to cortical Yeo atlas 
and parcellated subcortical regions, where each nodal color de-
notes the corresponding ICN. One can observe two main patterns 
emerged with excessive structural-functional coupling expression 
in Figure  2b. The former pattern located in frontal–parietal and 
subcortical area exhibited more structural-functional decoupling, 
whereas the latter coupling pattern concentrated in orbito-occipital 
areas. By the null model with randomized surrogate functional sig-
nals, we found six ICNs, including the visual, somatomotor, dorsal 
attention, frontoparietal, default, and subcortical networks, exhibit-
ing significantly robust SFDI distribution in HC (p < 0.001 for each 
ICN, see Figure 3a). Interestingly, the mean value of SFDI on these 
ICNs largely diverged along a macroscale functional gradient (see 
Figure 3b), from unimodal ICN (e.g., the visual and somatomotor net-
works with structural-functional coupling) to transmodal ICN (e.g., 
the dorsal attention and frontoparietal networks with structural-
functional decoupling).

3.4  |  Factors affecting decoupling index variations 
in HC

First, none of age, sex, and head motion had any significant effect 
on ICN-level SFDI in HC (see Table S1). For FC network topology, 
none of the graph metrics (global efficiency, clustering coefficient, 
and network modularity) was correlated with SFDI in any ICN 
(see Table  S2). For SC network topology, no ICN-level distribu-
tion similarity was observed between the sum of SC strength (see 
Figure S3) and SFDI in HC (see Figure 3). On the other hand, sig-
nificant positive correlations were found in the default (r = 0.38, 
p = 0.01), dorsal attention (r = 0.60, p < 0.001), and frontoparietal 

https://www.r-project.org/
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networks (r = 0.43, p = 0.003) in HC, indicating the interplay be-
tween SC and functional activity could be partially affected by the 
intrinsic connectivity strength, particularly on transmodal ICNs 
(see Figure S4).

3.5  |  Group comparisons of decoupling index

In the GLM controlling for age, sex, and head motion, the SFDI of MS 
was significantly higher in the somatomotor network (T = 2.16, raw 

F I G U R E  2  The mean SFDI of HC group projected on brain ICNs. (a) The parcellated brain regions belonging to the seven ICNs defined by 
Yeo atlas and subcortical network. (b) The mean SFDI of HC group, displayed on a binary logarithmic scale

F I G U R E  3  Null model results of the SFDI for each ICN obtained from the empirical/surrogate brain functional activity on HC group. (a) 
In each boxplot of the SFDI value, the box denotes null distribution from 100 randomization, while the black point denotes the empirical 
functional signals. (b) The rank of the SFDI for each significant ICN rejecting the null hypothesis
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p = 0.03, p = 0.04 with FDR correction), and significantly lower in 
the dorsal attention network (T = −2.23, raw p = 0.03, p = 0.04 with 
FDR correction), the subcortical network (T = −2.32, raw p = 0.02, 
p = 0.04 with FDR correction), and the visual network (T = −2.67, 
raw p = 0.01, p = 0.04 with FDR correction) compared with HC (see 
Table  2 and Figure  4). Similar structural-functional coupling trend 
was also observed on the default network (T = −1.88, raw p = 0.06). 
Significant age effect (T  =  −2.70, raw p  =  0.01) was observed on 
SFDI variations only in the dorsal attention network. No sex or head 
motion effect was observed. The distribution of SFDI among CIS, 
RRMS, and HC groups was also visualized in Figure S5.

3.6  |  Association between clinical phenotypes and 
decoupling index

When examining the effects of each brain ICN-level SFDI on disease 
duration or disease severity (EDSS), no significant clinical association 
was observed in MS patients. For imaging-cognition association, in-
terestingly, we found SFDI in the somotomotor network was associ-
ated with lower PASAT-3 scale (beta = −24.31, T = −2.88, p = 0.006) 
in MS patients (F = 4.39, p  =  0.004 for the linear model, see 
Figure 5 and Table 3). In consistent with the recent report (Koubiyr 
et al., 2021), our finding suggests that brain’s incapacity to regulate 
functional activity in response to structural damage may represent a 
maladaptive process affecting cognitive performance in MS. The sig-
nificant age effect was also observed on MS patient’s cognitive func-
tion (beta = −0.37, T = −3.28, p = 0.002). In contrast, none of the 
FC graph metrics (global efficiency, clustering coefficient and net-
work modularity) in the somatomotor network was correlated with 
PASAT-3 scale in MS (see Table S3), indicating superiority of SFDI 
measurements by stronger association with cognitive worsening.

4  |  DISCUSSION

This is the first study to investigate MS neuropathology from the 
perspective of brain structural-functional coupling using GFA ap-
proach. We showed that the structural-functional high-order inter-
action could be quantified as a single decoupling index, which serves 
as a trait-like feature among brain ICNs in HC. In CIS and RRMS, 
this structural-functional interaction aberrantly is decoupled in the 
somatomotor network, and coupled in the visual, dorsal attention, 
and subcortical networks. These findings, along with the observed 
correlation between SFDI variations and cognitive function in MS, 
suggest the important role of brain structural-functional coupling 
mechanism underlying MS evolution.

By introducing SFDI, we demonstrated that two distinct spa-
tial patterns emerged in healthy brains (Figure 3). Specifically, the 
functional activities in the somatomotor and visual networks were 
more rigidly constrained by the structural wiring (SFDI < 1), while 
the functional activity particularly in the dorsal attention, frontopa-
rietal, default, and subcortical networks deviated from the structural TA
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wiring (SFDI > 1). Consistently, the structural-functional alignment 
was more associated with lower-level brain function (or unimodal 
functional area), and the opposite was true for higher-level brain 
function (or transmodal functional area) (Preti & Van De Ville 2019; 
Vazquez-Rodriguez et al.,  2019). We suggest this spatial pattern 
probably reflect the intrinsic brain gradient, which was recently re-
vealed from cortical microstructure (Huntenburg et al., 2017), tem-
poral hierarchy (Chaudhuri et al., 2015), and functional connectivity 
(Margulies et al.,  2016). Although the mechanism underlying this 
structural-functional coupling manifestation needs further explora-
tion, one intuitive related interpretation is that reliable and fast task 
processing within unimodal areas may require a higher structural-
functional coupling, whereas decoupled ICNs allow more flexible 
and complex processing in transmodal emotional and cognitive tasks.

Our results revealed a wide-spread rearrangement of brain 
structural-functional interplay in CIS and RRMS. This aberrant effect, 

F I G U R E  4  Box–whisker plot of brain ICN-level SFDI for HC and 
MS. The two whiskers extend from the first quartile to the smallest 
value and from the third quartile to the largest value. The median is 
shown with a bold line. *p < 0.05; **p < 0.01; ***p < 0.001
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F I G U R E  5  Correlation plot between SFDI on the somatomotor 
network and PASAT-3 scale for MS, where each green ball denotes 
a RRMS patient and each red ball denotes a CIS patient
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particularly observed in the somatomotor, visual, subcortical, and 
dorsal attention (also known as salience) networks, resonates with 
previous neuropathological evidences. Consistently, Koubiyr et al. 
observed structural-functional decoupling changes in the visual, so-
matomotor, and salience networks after 1 year following CIS onset 
(Koubiyr et al., 2019), and inversely coupled on the whole-brain level 
after 5 years following CIS onset (Koubiyr et al., 2021). Such com-
plex structural-functional coupling and decoupling effects were also 
been seen in neuropathological disorders including schizophrenia 
(Cocchi et al., 2014; Skudlarski et al., 2010), bipolar disorder (Zhang 
et al., 2019), idiopathic generalized epilepsy (Zhang et al., 2011), and 
psychogenic nonepileptic seizures (Ding et al., 2013). From our ob-
servations, the tight structural-functional coupling in the somato-
motor network was decreased in MS, indicating of weaker constraint 
of the underlying wiring diagram impart on brain activity. On the 
other hand, greater anatomical constraints in the visual, subcortical, 
and dorsal attention networks suggested a damaged capacity of the 
brain to reconfigure neuronal signaling in MS.

Moreover, the structural-functional coupling degree in the so-
matomotor network can predict the cognitive function in MS (see 
Table 3). To put it into perspective, 0.1 unit increase in SFDI in the 
somatomotor network was equivalent to 2.4 points cognitive de-
cline in PASAT-3 scale. As one prominent ICN exhibiting functional 
disconnection in MS (Tahedl et al., 2018), we argue that the soma-
tomotor network with excessive decoupling structural-functional 
interplay may play a maladaptive role in cognitive worsening of MS 
patients. Our evidence supports the hypothesis that cognition rele-
vant changes could be induced by complex neural dynamics result 
from structural disconnection. Inconsistently, Hellyer et al revealed 
that decreased metastable neural dynamics disrupted by structural 
disconnection were associated with reduced cognitive flexibility 
and information processing (Hellyer et al., 2015). We suspect that 
the association between cognitive decline and the aberrantly stron-
ger structural-functional coupling may be explained by disordered 
internal neuromechanism such as homeostatic plasticity (Rocha 
et al.,  2018; Turrigiano,  2011). Interestingly, we did not find any 
cognition-relevant association with coupling variations on the de-
fault mode network, which was traditionally considered as a hall-
mark network in MS. This could be attributed to different spatial 
scales and metrics (FC vs. coupling). The previously reported altered 
brain FC related to a worsen performance in MS was almost referred 
to inter-areal connectivity within the default mode network (Eijlers 
et al., 2017; Louapre et al., 2014), whereas the structural-functional 
coupling was averaged for each ICN in our analysis.

A related question is which factor contributes to MS-related 
structural-functional coupling rearrangement. When examining 
the underlying physiological factors, we observed that none of 
age, sex, or head motion during scanning was associated with brain 
structural-functional interaction. Inconsistently, brain structural-
functional coupling was found to exhibit slightly stronger in older 
males (Gu et al., 2021). We postulate this inconsistency may be at-
tributable to the coupling definition difference (SC-FC correlation 

vs. SFDI). Furthermore, the variation of brain FC network topology 
was not only uncorrelated with ICN-level SFDI, but also exhibited no 
disturbance effects in the SFDI-cognition association in MS cohort. 
Therefore, we argue that SFDI is an important imaging indicator to 
detect neuropathology of MS, independent of functional network 
topology. More evidence from molecular neuropathological studies 
is further needed to validate the exact mechanism of structural-
functional coupling signature related to MS.

We acknowledge that our study is not without limitations. 
First, the optimal fiber tracking method in structural brain net-
work construction is still controversial, for regions with more fre-
quent fiber disposition are more likely to obtain potential errors 
during fiber tract reconstruction. To maximally avoid such effects, 
the anatomical-constrained tractography method for tractogra-
phy estimation with anatomical priors was performed to improve 
the biological plausibility of the generated streamlines (Smith 
et al., 2012). Second, the current study only includes early stage 
(CIS) and relapsing-remitting stage of MS patients. Future studies 
can investigate the primary progressive stage to explicitly unveil 
whether the brain coupling signatures in different periods consti-
tute a continuum. Besides, the sample size in our cross-sectional 
study is relatively small, especially for CIS patients. Validation of 
the observed MS-associated brain structural-functional coupling 
requires further longitudinal examinations on larger cohorts. 
Finally, more comprehensive neurological examinations such as 
Minimal Assessment of Cognitive Function in Multiple Sclerosis 
(MACFIMS) are needed to validate the exact role of SFDI changes 
in MS cognitive worsening.

In summary, this study provides a new avenue to quantitatively 
delineate the brain structural-functional association variation af-
fected by MS in the GFA framework. The excessive reorganization 
of brain structural-functional interplay on the visual, somatomotor, 
dorsal attention and subcortical networks was identified in MS. 
Furthermore, this structural-functional coupling exhibited on the 
somatomotor network in MS associates with cognitive worsening. 
Overall, our study suggests a unique signature of brain structural-
functional reorganization in MS.
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